Set the figure size and adjust the padding between and around the subplots. Create two Pandas dataframes, df1 and df2, of two-dimensional, size-mutable, potentially heterogeneous tabular data. Plot df1 and df2 using plot() method.
pandas. DataFrame. append() method is used to append one DataFrame row(s) and column(s) with another, it can also be used to append multiple (three or more) DataFrames.
To create multiple plots use matplotlib. pyplot. subplots method which returns the figure along with Axes object or array of Axes object. nrows, ncols attributes of subplots() method determine the number of rows and columns of the subplot grid.
You can manually create the subplots with matplotlib, and then plot the dataframes on a specific subplot using the ax
keyword. For example for 4 subplots (2x2):
import matplotlib.pyplot as plt
fig, axes = plt.subplots(nrows=2, ncols=2)
df1.plot(ax=axes[0,0])
df2.plot(ax=axes[0,1])
...
Here axes
is an array which holds the different subplot axes, and you can access one just by indexing axes
.
If you want a shared x-axis, then you can provide sharex=True
to plt.subplots
.
You can see e.gs. in the documentation demonstrating joris answer. Also from the documentation, you could also set subplots=True
and layout=(,)
within the pandas plot
function:
df.plot(subplots=True, layout=(1,2))
You could also use fig.add_subplot()
which takes subplot grid parameters such as 221, 222, 223, 224, etc. as described in the post here. Nice examples of plot on pandas data frame, including subplots, can be seen in this ipython notebook.
You can use the familiar Matplotlib style calling a figure
and subplot
, but you simply need to specify the current axis using plt.gca()
. An example:
plt.figure(1)
plt.subplot(2,2,1)
df.A.plot() #no need to specify for first axis
plt.subplot(2,2,2)
df.B.plot(ax=plt.gca())
plt.subplot(2,2,3)
df.C.plot(ax=plt.gca())
etc...
You can plot multiple subplots of multiple pandas data frames using matplotlib with a simple trick of making a list of all data frame. Then using the for loop for plotting subplots.
Working code:
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
# dataframe sample data
df1 = pd.DataFrame(np.random.rand(10,2)*100, columns=['A', 'B'])
df2 = pd.DataFrame(np.random.rand(10,2)*100, columns=['A', 'B'])
df3 = pd.DataFrame(np.random.rand(10,2)*100, columns=['A', 'B'])
df4 = pd.DataFrame(np.random.rand(10,2)*100, columns=['A', 'B'])
df5 = pd.DataFrame(np.random.rand(10,2)*100, columns=['A', 'B'])
df6 = pd.DataFrame(np.random.rand(10,2)*100, columns=['A', 'B'])
#define number of rows and columns for subplots
nrow=3
ncol=2
# make a list of all dataframes
df_list = [df1 ,df2, df3, df4, df5, df6]
fig, axes = plt.subplots(nrow, ncol)
# plot counter
count=0
for r in range(nrow):
for c in range(ncol):
df_list[count].plot(ax=axes[r,c])
count+=1
Using this code you can plot subplots in any configuration. You need to define the number of rows nrow
and the number of columns ncol
. Also, you need to make list of data frames df_list
which you wanted to plot.
You can use this:
fig = plt.figure()
ax = fig.add_subplot(221)
plt.plot(x,y)
ax = fig.add_subplot(222)
plt.plot(x,z)
...
plt.show()
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With