Non-relational databases often perform faster because a query doesn't have to view several tables in order to deliver an answer, as relational datasets often do. Non-relational databases are therefore ideal for storing data that may be changed frequently or for applications that handle many different kinds of data.
Plain text files in a filesystem
XML or JSON files on disk
Spreadsheet / CSV file
Subversion (or similar disk based version control system)
Berkeley DB (Basically, a disk based hashtable)
Amazon's Simple DB
Google's App Engine Datastore
CouchDB
Native language collections (stored in memory or serialised on disk)
Custom (hand-written) storage engine
I can't claim to know anything much about them, but you might also like to look into object database systems.
Matt Sheppard's answer is great (mod up), but I would take account these factors when thinking about a spindle:
One particular advantage of CSV files over RDBMSes is that they can be easy to condense and move around to practically any other machine. We do large data transfers, and everything's simple enough we just use one big CSV file, and easy to script using tools like rsync. To reduce repetition on big CSV files, you could use something like YAML. I'm not sure I'd store anything like JSON or XML, unless you had significant relationship requirements.
As far as not-mentioned alternatives, don't discount Hadoop, which is an open source implementation of MapReduce. This should work well if you have a TON of loosely structured data that needs to be analyzed, and you want to be in a scenario where you can just add 10 more machines to handle data processing.
For example, I started trying to analyze performance that was essentially all timing numbers of different functions logged across around 20 machines. After trying to stick everything in a RDBMS, I realized that I really don't need to query the data again once I've aggregated it. And, it's only useful in it's aggregated format to me. So, I keep the log files around, compressed, and then leave the aggregated data in a DB.
Note I'm more used to thinking with "big" sizes.
The filesystem's prety handy for storing binary data, which never works amazingly well in relational databases.
Try Prevayler: http://www.prevayler.org/wiki/ Prevayler is alternative to RDBMS. In the site have more info.
If you don't need ACID, you probably don't need the overhead of an RDBMS. So, determine whether you need that first. Most of the non-RDBMS answers provided here do not provide ACID.
Custom (hand-written) storage engine / Potentially very high performance in required uses cases
http://www.hdfgroup.org/
If you have enormous data sets, instead of rolling your own, you might use HDF, the Hierarchical Data Format.
http://en.wikipedia.org/wiki/Hierarchical_Data_Format:
HDF supports several different data models, including multidimensional arrays, raster images, and tables.
It's also hierarchical like a file system, but the data is stored in one magic binary file.
HDF5 is a suite that makes possible the management of extremely large and complex data collections.
Think petabytes of NASA/JPL remote sensing data.
G'day,
One case that I can think of is when the data you are modelling cannot be easily represented in a relational database.
Once such example is the database used by mobile phone operators to monitor and control base stations for mobile telephone networks.
I almost all of these cases, an OO DB is used, either a commercial product or a self-rolled system that allows heirarchies of objects.
I've worked on a 3G monitoring application for a large company who will remain nameless, but whose logo is a red wine stain (-: , and they used such an OO DB to keep track of all the various attributes for individual cells within the network.
Interrogation of such DBs is done using proprietary techniques that are, usually, completely free from SQL.
HTH.
cheers,
Rob
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With