Is there a solution to find out the missing values based on column
for example :
Field_name Field_Type Field_Id
Message type identifier M 0
Nan M 1
Bitmap secondary C 1
Nan C 2
Processing code M 3
Nan M 4
Amount-Settlement C 5
So here I want to know the missing values in the column Field_name and the Field_Type = 'M'
, Ignoring the missing values in Field_Type = 'C'
Expected Output :
Field_name Field_Type Field_Id
Nan M 1
Nan M 4
Edit : Can we do this for a list of dataframes ?
data_list = [df1,df2,df3]
output : result [[missngvalues in df1],[missngvalues in df2],[missngvalues in df3]]
Checking for missing values using isnull() and notnull() In order to check missing values in Pandas DataFrame, we use a function isnull() and notnull(). Both function help in checking whether a value is NaN or not. These function can also be used in Pandas Series in order to find null values in a series.
isnull(). Values. any() method to check if there are any missing data in pandas DataFrame, missing data is represented as NaN or None values in DataFrame. When your data contains NaN or None, using this method returns the boolean value True otherwise returns False .
If nan
are missing values chain mask Series.isna
and Series.eq
for ==
by &
for botwise AND
:
df[df.Field_name.isna() & df.Field_Type.eq('M')]
If nan
are strings compare both by Series.eq
:
df[df.Field_name.eq('Nan') & df.Field_Type.eq('M')]
print (df)
Field_name Field_Type Field_Id
1 Nan M 1
5 Nan M 4
EDIT:
If working with list of DataFrame
s:
data_list = [df1,df2,df3]
result = [df[df.Field_name.isna() & df.Field_Type.eq('M')] for df in data_list]
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With