I am having this env.yml which is generated from exporting the environment from Conda
channels:
- pytorch
- anaconda
- conda-forge
- defaults
dependencies:
- _libgcc_mutex=0.1=main
- _tflow_select=2.3.0=mkl
- absl-py=0.8.1=py37_0
- astor=0.8.0=py37_0
- av=6.2.0=py37h866369f_1
- blas=1.0=openblas
- bzip2=1.0.8=h516909a_1
- c-ares=1.15.0=h7b6447c_1001
- ca-certificates=2019.10.16=0
- certifi=2019.9.11=py37_0
- cffi=1.13.2=py37h2e261b9_0
- cudatoolkit=10.0.130=0
- ffmpeg=4.1.3=h167e202_0
- freetype=2.10.0=he983fc9_1
- gast=0.2.2=py37_0
- gmp=6.1.2=hf484d3e_1000
- gnutls=3.6.5=hd3a4fd2_1002
- google-pasta=0.1.8=py_0
- grpcio=1.16.1=py37hf8bcb03_1
- h5py=2.9.0=py37h7918eee_0
- hdf5=1.10.4=hb1b8bf9_0
- intel-openmp=2019.5=281
- joblib=0.14.0=py_0
- jpeg=9c=h14c3975_1001
- keras=2.2.4=0
- keras-applications=1.0.8=py_0
- keras-base=2.2.4=py37_0
- keras-preprocessing=1.1.0=py_1
- lame=3.100=h14c3975_1001
- libblas=3.8.0=14_openblas
- libcblas=3.8.0=14_openblas
- libedit=3.1.20181209=hc058e9b_0
- mkl-service=2.3.0=py37he904b0f_0
I am then doing pip freeze to get the packages and writing this in req.txt
absl-py==0.8.1
astor==0.8.0
av==6.2.0
certifi==2019.9.11
cffi==1.13.2
gast==0.2.2
google-pasta==0.1.8
grpcio==1.16.1
h5py==2.9.0
joblib==0.14.0
Keras==2.2.4
Keras-Applications==1.0.8
Keras-Preprocessing==1.1.0
Markdown==3.1.1
mkl-service==2.3.0
six==1.13.0
tensorboard==1.15.0
tensorflow==1.15.0
tensorflow-estimator==1.15.1
termcolor==1.1.0
torch==1.3.1
torchvision==0.4.2
webencodings==0.5.1
Werkzeug==0.16.0
wrapt==1.11.2
When I am using pip install -r req.txt it is breaking for few packages.
What is best way to achieve this?
tl;dr: Convert Conda environment to Pip Environment
The error maybe due to mkl-service cannot be installed using pip It can be installed using conda : https://anaconda.org/anaconda/mkl-service
You can obtain Anaconda or Miniconda images in your Docker. To obtain a fully working Miniconda image:
docker search continuumio
Pull the desired image:
docker pull continuumio/miniconda
Create a container using the image:
docker run -t -i continuumio/miniconda /bin/bash
This gives you direct access to the container where the conda tool is already available.
Test the container:
conda info
You now have a fully working Conda image. Now you can create your environment using
conda env create -n my_env -f env.yaml
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With