I wish to do exactly this: Take dates from one dataframe and filter data in another dataframe - R
except without joining, as I am afraid that after I join my data the result will be too big to fit in memory, prior to the filter.
Here is sample data:
tmp_df <- data.frame(a = 1:10)
I wish to do an operation that looks like this:
lower_bound <- c(2, 4)
upper_bound <- c(2, 5)
tmp_df %>%
filter(a >= lower_bound & a <= upper_bound) # does not work as <= is vectorised inappropriately
and my desired result is:
> tmp_df[(tmp_df$a <= 2 & tmp_df$a >= 2) | (tmp_df$a <= 5 & tmp_df$a >= 4), , drop = F]
# one way to get indices to subset data frame, impractical for a long range vector
a
2 2
4 4
5 5
My problem with memory requirements (with respect to the join solution linked) is when tmp_df
has many more rows and the lower_bound
and upper_bound
vectors have many more entries. A dplyr
solution, or a solution that can be part of pipe is preferred.
Maybe you could borrow the inrange
function from data.table
, which
checks whether each value in x is in between any of the intervals provided in lower,upper.
Usage:
inrange(x, lower, upper, incbounds=TRUE)
library(dplyr); library(data.table)
tmp_df %>% filter(inrange(a, c(2,4), c(2,5)))
# a
#1 2
#2 4
#3 5
If you'd like to stick with dplyr
it has similar functionality provided through the between
function.
# ranges I want to check between
my_ranges <- list(c(2,2), c(4,5), c(6,7))
tmp_df <- data.frame(a=1:10)
tmp_df %>%
filter(apply(bind_rows(lapply(my_ranges,
FUN=function(x, a){
data.frame(t(between(a, x[1], x[2])))
}, a)
), 2, any))
a
1 2
2 4
3 5
4 6
5 7
Just be aware that the argument boundaries are included by default and that cannot be changed as with inrange
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With