Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Fastest way to list all primes below N

This is the best algorithm I could come up.

def get_primes(n):     numbers = set(range(n, 1, -1))     primes = []     while numbers:         p = numbers.pop()         primes.append(p)         numbers.difference_update(set(range(p*2, n+1, p)))     return primes  >>> timeit.Timer(stmt='get_primes.get_primes(1000000)', setup='import   get_primes').timeit(1) 1.1499958793645562 

Can it be made even faster?

This code has a flaw: Since numbers is an unordered set, there is no guarantee that numbers.pop() will remove the lowest number from the set. Nevertheless, it works (at least for me) for some input numbers:

>>> sum(get_primes(2000000)) 142913828922L #That's the correct sum of all numbers below 2 million >>> 529 in get_primes(1000) False >>> 529 in get_primes(530) True 
like image 923
jbochi Avatar asked Jan 14 '10 23:01

jbochi


People also ask

How do you find the number of primes less than n?

The prime number theorem provides a way to approximate the number of primes less than or equal to a given number n. This value is called π(n), where π is the “prime counting function.” For example, π(10) = 4 since there are four primes less than or equal to 10 (2, 3, 5 and 7).

What is the fastest way to figure out prime numbers?

To prove whether a number is a prime number, first try dividing it by 2, and see if you get a whole number. If you do, it can't be a prime number. If you don't get a whole number, next try dividing it by prime numbers: 3, 5, 7, 11 (9 is divisible by 3) and so on, always dividing by a prime number (see table below).

How do you find all prime numbers up to n?

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97.


1 Answers

Warning: timeit results may vary due to differences in hardware or version of Python.

Below is a script which compares a number of implementations:

  • ambi_sieve_plain,
  • rwh_primes,
  • rwh_primes1,
  • rwh_primes2,
  • sieveOfAtkin,
  • sieveOfEratosthenes,
  • sundaram3,
  • sieve_wheel_30,
  • ambi_sieve (requires numpy)
  • primesfrom3to (requires numpy)
  • primesfrom2to (requires numpy)

Many thanks to stephan for bringing sieve_wheel_30 to my attention. Credit goes to Robert William Hanks for primesfrom2to, primesfrom3to, rwh_primes, rwh_primes1, and rwh_primes2.

Of the plain Python methods tested, with psyco, for n=1000000, rwh_primes1 was the fastest tested.

+---------------------+-------+ | Method              | ms    | +---------------------+-------+ | rwh_primes1         | 43.0  | | sieveOfAtkin        | 46.4  | | rwh_primes          | 57.4  | | sieve_wheel_30      | 63.0  | | rwh_primes2         | 67.8  |     | sieveOfEratosthenes | 147.0 | | ambi_sieve_plain    | 152.0 | | sundaram3           | 194.0 | +---------------------+-------+ 

Of the plain Python methods tested, without psyco, for n=1000000, rwh_primes2 was the fastest.

+---------------------+-------+ | Method              | ms    | +---------------------+-------+ | rwh_primes2         | 68.1  | | rwh_primes1         | 93.7  | | rwh_primes          | 94.6  | | sieve_wheel_30      | 97.4  | | sieveOfEratosthenes | 178.0 | | ambi_sieve_plain    | 286.0 | | sieveOfAtkin        | 314.0 | | sundaram3           | 416.0 | +---------------------+-------+ 

Of all the methods tested, allowing numpy, for n=1000000, primesfrom2to was the fastest tested.

+---------------------+-------+ | Method              | ms    | +---------------------+-------+ | primesfrom2to       | 15.9  | | primesfrom3to       | 18.4  | | ambi_sieve          | 29.3  | +---------------------+-------+ 

Timings were measured using the command:

python -mtimeit -s"import primes" "primes.{method}(1000000)" 

with {method} replaced by each of the method names.

primes.py:

#!/usr/bin/env python import psyco; psyco.full() from math import sqrt, ceil import numpy as np  def rwh_primes(n):     # https://stackoverflow.com/questions/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188     """ Returns  a list of primes < n """     sieve = [True] * n     for i in xrange(3,int(n**0.5)+1,2):         if sieve[i]:             sieve[i*i::2*i]=[False]*((n-i*i-1)/(2*i)+1)     return [2] + [i for i in xrange(3,n,2) if sieve[i]]  def rwh_primes1(n):     # https://stackoverflow.com/questions/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188     """ Returns  a list of primes < n """     sieve = [True] * (n/2)     for i in xrange(3,int(n**0.5)+1,2):         if sieve[i/2]:             sieve[i*i/2::i] = [False] * ((n-i*i-1)/(2*i)+1)     return [2] + [2*i+1 for i in xrange(1,n/2) if sieve[i]]  def rwh_primes2(n):     # https://stackoverflow.com/questions/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188     """ Input n>=6, Returns a list of primes, 2 <= p < n """     correction = (n%6>1)     n = {0:n,1:n-1,2:n+4,3:n+3,4:n+2,5:n+1}[n%6]     sieve = [True] * (n/3)     sieve[0] = False     for i in xrange(int(n**0.5)/3+1):       if sieve[i]:         k=3*i+1|1         sieve[      ((k*k)/3)      ::2*k]=[False]*((n/6-(k*k)/6-1)/k+1)         sieve[(k*k+4*k-2*k*(i&1))/3::2*k]=[False]*((n/6-(k*k+4*k-2*k*(i&1))/6-1)/k+1)     return [2,3] + [3*i+1|1 for i in xrange(1,n/3-correction) if sieve[i]]  def sieve_wheel_30(N):     # http://zerovolt.com/?p=88     ''' Returns a list of primes <= N using wheel criterion 2*3*5 = 30  Copyright 2009 by zerovolt.com This code is free for non-commercial purposes, in which case you can just leave this comment as a credit for my work. If you need this code for commercial purposes, please contact me by sending an email to: info [at] zerovolt [dot] com.'''     __smallp = ( 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59,     61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139,     149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227,     229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311,     313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401,     409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491,     499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599,     601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683,     691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797,     809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887,     907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997)      wheel = (2, 3, 5)     const = 30     if N < 2:         return []     if N <= const:         pos = 0         while __smallp[pos] <= N:             pos += 1         return list(__smallp[:pos])     # make the offsets list     offsets = (7, 11, 13, 17, 19, 23, 29, 1)     # prepare the list     p = [2, 3, 5]     dim = 2 + N // const     tk1  = [True] * dim     tk7  = [True] * dim     tk11 = [True] * dim     tk13 = [True] * dim     tk17 = [True] * dim     tk19 = [True] * dim     tk23 = [True] * dim     tk29 = [True] * dim     tk1[0] = False     # help dictionary d     # d[a , b] = c  ==> if I want to find the smallest useful multiple of (30*pos)+a     # on tkc, then I need the index given by the product of [(30*pos)+a][(30*pos)+b]     # in general. If b < a, I need [(30*pos)+a][(30*(pos+1))+b]     d = {}     for x in offsets:         for y in offsets:             res = (x*y) % const             if res in offsets:                 d[(x, res)] = y     # another help dictionary: gives tkx calling tmptk[x]     tmptk = {1:tk1, 7:tk7, 11:tk11, 13:tk13, 17:tk17, 19:tk19, 23:tk23, 29:tk29}     pos, prime, lastadded, stop = 0, 0, 0, int(ceil(sqrt(N)))     # inner functions definition     def del_mult(tk, start, step):         for k in xrange(start, len(tk), step):             tk[k] = False     # end of inner functions definition     cpos = const * pos     while prime < stop:         # 30k + 7         if tk7[pos]:             prime = cpos + 7             p.append(prime)             lastadded = 7             for off in offsets:                 tmp = d[(7, off)]                 start = (pos + prime) if off == 7 else (prime * (const * (pos + 1 if tmp < 7 else 0) + tmp) )//const                 del_mult(tmptk[off], start, prime)         # 30k + 11         if tk11[pos]:             prime = cpos + 11             p.append(prime)             lastadded = 11             for off in offsets:                 tmp = d[(11, off)]                 start = (pos + prime) if off == 11 else (prime * (const * (pos + 1 if tmp < 11 else 0) + tmp) )//const                 del_mult(tmptk[off], start, prime)         # 30k + 13         if tk13[pos]:             prime = cpos + 13             p.append(prime)             lastadded = 13             for off in offsets:                 tmp = d[(13, off)]                 start = (pos + prime) if off == 13 else (prime * (const * (pos + 1 if tmp < 13 else 0) + tmp) )//const                 del_mult(tmptk[off], start, prime)         # 30k + 17         if tk17[pos]:             prime = cpos + 17             p.append(prime)             lastadded = 17             for off in offsets:                 tmp = d[(17, off)]                 start = (pos + prime) if off == 17 else (prime * (const * (pos + 1 if tmp < 17 else 0) + tmp) )//const                 del_mult(tmptk[off], start, prime)         # 30k + 19         if tk19[pos]:             prime = cpos + 19             p.append(prime)             lastadded = 19             for off in offsets:                 tmp = d[(19, off)]                 start = (pos + prime) if off == 19 else (prime * (const * (pos + 1 if tmp < 19 else 0) + tmp) )//const                 del_mult(tmptk[off], start, prime)         # 30k + 23         if tk23[pos]:             prime = cpos + 23             p.append(prime)             lastadded = 23             for off in offsets:                 tmp = d[(23, off)]                 start = (pos + prime) if off == 23 else (prime * (const * (pos + 1 if tmp < 23 else 0) + tmp) )//const                 del_mult(tmptk[off], start, prime)         # 30k + 29         if tk29[pos]:             prime = cpos + 29             p.append(prime)             lastadded = 29             for off in offsets:                 tmp = d[(29, off)]                 start = (pos + prime) if off == 29 else (prime * (const * (pos + 1 if tmp < 29 else 0) + tmp) )//const                 del_mult(tmptk[off], start, prime)         # now we go back to top tk1, so we need to increase pos by 1         pos += 1         cpos = const * pos         # 30k + 1         if tk1[pos]:             prime = cpos + 1             p.append(prime)             lastadded = 1             for off in offsets:                 tmp = d[(1, off)]                 start = (pos + prime) if off == 1 else (prime * (const * pos + tmp) )//const                 del_mult(tmptk[off], start, prime)     # time to add remaining primes     # if lastadded == 1, remove last element and start adding them from tk1     # this way we don't need an "if" within the last while     if lastadded == 1:         p.pop()     # now complete for every other possible prime     while pos < len(tk1):         cpos = const * pos         if tk1[pos]: p.append(cpos + 1)         if tk7[pos]: p.append(cpos + 7)         if tk11[pos]: p.append(cpos + 11)         if tk13[pos]: p.append(cpos + 13)         if tk17[pos]: p.append(cpos + 17)         if tk19[pos]: p.append(cpos + 19)         if tk23[pos]: p.append(cpos + 23)         if tk29[pos]: p.append(cpos + 29)         pos += 1     # remove exceeding if present     pos = len(p) - 1     while p[pos] > N:         pos -= 1     if pos < len(p) - 1:         del p[pos+1:]     # return p list     return p  def sieveOfEratosthenes(n):     """sieveOfEratosthenes(n): return the list of the primes < n."""     # Code from: <[email protected]>, Nov 30 2006     # http://groups.google.com/group/comp.lang.python/msg/f1f10ced88c68c2d     if n <= 2:         return []     sieve = range(3, n, 2)     top = len(sieve)     for si in sieve:         if si:             bottom = (si*si - 3) // 2             if bottom >= top:                 break             sieve[bottom::si] = [0] * -((bottom - top) // si)     return [2] + [el for el in sieve if el]  def sieveOfAtkin(end):     """sieveOfAtkin(end): return a list of all the prime numbers <end     using the Sieve of Atkin."""     # Code by Steve Krenzel, <[email protected]>, improved     # Code: https://web.archive.org/web/20080324064651/http://krenzel.info/?p=83     # Info: http://en.wikipedia.org/wiki/Sieve_of_Atkin     assert end > 0     lng = ((end-1) // 2)     sieve = [False] * (lng + 1)      x_max, x2, xd = int(sqrt((end-1)/4.0)), 0, 4     for xd in xrange(4, 8*x_max + 2, 8):         x2 += xd         y_max = int(sqrt(end-x2))         n, n_diff = x2 + y_max*y_max, (y_max << 1) - 1         if not (n & 1):             n -= n_diff             n_diff -= 2         for d in xrange((n_diff - 1) << 1, -1, -8):             m = n % 12             if m == 1 or m == 5:                 m = n >> 1                 sieve[m] = not sieve[m]             n -= d      x_max, x2, xd = int(sqrt((end-1) / 3.0)), 0, 3     for xd in xrange(3, 6 * x_max + 2, 6):         x2 += xd         y_max = int(sqrt(end-x2))         n, n_diff = x2 + y_max*y_max, (y_max << 1) - 1         if not(n & 1):             n -= n_diff             n_diff -= 2         for d in xrange((n_diff - 1) << 1, -1, -8):             if n % 12 == 7:                 m = n >> 1                 sieve[m] = not sieve[m]             n -= d      x_max, y_min, x2, xd = int((2 + sqrt(4-8*(1-end)))/4), -1, 0, 3     for x in xrange(1, x_max + 1):         x2 += xd         xd += 6         if x2 >= end: y_min = (((int(ceil(sqrt(x2 - end))) - 1) << 1) - 2) << 1         n, n_diff = ((x*x + x) << 1) - 1, (((x-1) << 1) - 2) << 1         for d in xrange(n_diff, y_min, -8):             if n % 12 == 11:                 m = n >> 1                 sieve[m] = not sieve[m]             n += d      primes = [2, 3]     if end <= 3:         return primes[:max(0,end-2)]      for n in xrange(5 >> 1, (int(sqrt(end))+1) >> 1):         if sieve[n]:             primes.append((n << 1) + 1)             aux = (n << 1) + 1             aux *= aux             for k in xrange(aux, end, 2 * aux):                 sieve[k >> 1] = False      s  = int(sqrt(end)) + 1     if s  % 2 == 0:         s += 1     primes.extend([i for i in xrange(s, end, 2) if sieve[i >> 1]])      return primes  def ambi_sieve_plain(n):     s = range(3, n, 2)     for m in xrange(3, int(n**0.5)+1, 2):          if s[(m-3)/2]:              for t in xrange((m*m-3)/2,(n>>1)-1,m):                 s[t]=0     return [2]+[t for t in s if t>0]  def sundaram3(max_n):     # https://stackoverflow.com/questions/2068372/fastest-way-to-list-all-primes-below-n-in-python/2073279#2073279     numbers = range(3, max_n+1, 2)     half = (max_n)//2     initial = 4      for step in xrange(3, max_n+1, 2):         for i in xrange(initial, half, step):             numbers[i-1] = 0         initial += 2*(step+1)          if initial > half:             return [2] + filter(None, numbers)  ################################################################################ # Using Numpy: def ambi_sieve(n):     # http://tommih.blogspot.com/2009/04/fast-prime-number-generator.html     s = np.arange(3, n, 2)     for m in xrange(3, int(n ** 0.5)+1, 2):          if s[(m-3)/2]:              s[(m*m-3)/2::m]=0     return np.r_[2, s[s>0]]  def primesfrom3to(n):     # https://stackoverflow.com/questions/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188     """ Returns a array of primes, p < n """     assert n>=2     sieve = np.ones(n/2, dtype=np.bool)     for i in xrange(3,int(n**0.5)+1,2):         if sieve[i/2]:             sieve[i*i/2::i] = False     return np.r_[2, 2*np.nonzero(sieve)[0][1::]+1]      def primesfrom2to(n):     # https://stackoverflow.com/questions/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188     """ Input n>=6, Returns a array of primes, 2 <= p < n """     sieve = np.ones(n/3 + (n%6==2), dtype=np.bool)     sieve[0] = False     for i in xrange(int(n**0.5)/3+1):         if sieve[i]:             k=3*i+1|1             sieve[      ((k*k)/3)      ::2*k] = False             sieve[(k*k+4*k-2*k*(i&1))/3::2*k] = False     return np.r_[2,3,((3*np.nonzero(sieve)[0]+1)|1)]  if __name__=='__main__':     import itertools     import sys      def test(f1,f2,num):         print('Testing {f1} and {f2} return same results'.format(             f1=f1.func_name,             f2=f2.func_name))         if not all([a==b for a,b in itertools.izip_longest(f1(num),f2(num))]):             sys.exit("Error: %s(%s) != %s(%s)"%(f1.func_name,num,f2.func_name,num))      n=1000000     test(sieveOfAtkin,sieveOfEratosthenes,n)     test(sieveOfAtkin,ambi_sieve,n)     test(sieveOfAtkin,ambi_sieve_plain,n)      test(sieveOfAtkin,sundaram3,n)     test(sieveOfAtkin,sieve_wheel_30,n)     test(sieveOfAtkin,primesfrom3to,n)     test(sieveOfAtkin,primesfrom2to,n)     test(sieveOfAtkin,rwh_primes,n)     test(sieveOfAtkin,rwh_primes1,n)              test(sieveOfAtkin,rwh_primes2,n) 

Running the script tests that all implementations give the same result.

like image 88
unutbu Avatar answered Sep 22 '22 21:09

unutbu