I'm looking for an efficient (Fast) approximation of the exponential function operating on AVX elements (Single Precision Floating Point). Namely - __m256 _mm256_exp_ps( __m256 x )
without SVML.
Relative Accuracy should be something like ~1e-6, or ~20 mantissa bits (1 part in 2^20).
I'd be happy if it is written in C Style with Intel intrinsics.
Code should be portable (Windows, macOS, Linux, MSVC, ICC, GCC, etc...).
This is similar to Fastest Implementation of Exponential Function Using SSE, but that question is looking for very fast with low precision (The current answer there gives about 1e-3 precision).
Also, this question is looking for AVX / AVX2 (and FMA). But note that the answers on both questions are easily ported between SSE4 __m128
or AVX2 __m256
, so future readers should choose based on required precision / performance trade off.
I played a lot with this, and discovered this one, that has relative accuracy about ~1-07e and simple to convert to vector instructions. Having only 4 constants, 5 multiplications and 1 division this is twice as fast as built-in exp() function.
float fast_exp(float x)
{
const float c1 = 0.007972914726F;
const float c2 = 0.1385283768F;
const float c3 = 2.885390043F;
const float c4 = 1.442695022F;
x *= c4; //convert to 2^(x)
int intPart = (int)x;
x -= intPart;
float xx = x * x;
float a = x + c1 * xx * x;
float b = c3 + c2 * xx;
float res = (b + a) / (b - a);
reinterpret_cast<int &>(res) += intPart << 23; // res *= 2^(intPart)
return res;
}
Converting to AVX (updated)
__m256 _mm256_exp_ps(__m256 _x)
{
__m256 c1 = _mm256_set1_ps(0.007972914726F);
__m256 c2 = _mm256_set1_ps(0.1385283768F);
__m256 c3 = _mm256_set1_ps(2.885390043F);
__m256 c4 = _mm256_set1_ps(1.442695022F);
__m256 x = _mm256_mul_ps(_x, c4); //convert to 2^(x)
__m256 intPartf = _mm256_round_ps(x, _MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC);
x = _mm256_sub_ps(x, intPartf);
__m256 xx = _mm256_mul_ps(x, x);
__m256 a = _mm256_add_ps(x, _mm256_mul_ps(c1, _mm256_mul_ps(xx, x))); //can be improved with FMA
__m256 b = _mm256_add_ps(c3, _mm256_mul_ps(c2, xx));
__m256 res = _mm256_div_ps(_mm256_add_ps(b, a), _mm256_sub_ps(b, a));
__m256i intPart = _mm256_cvtps_epi32(intPartf); //res = 2^intPart. Can be improved with AVX2!
__m128i ii0 = _mm_slli_epi32(_mm256_castsi256_si128(intPart), 23);
__m128i ii1 = _mm_slli_epi32(_mm256_extractf128_si256(intPart, 1), 23);
__m128i res_0 = _mm_add_epi32(ii0, _mm256_castsi256_si128(_mm256_castps_si256(res)));
__m128i res_1 = _mm_add_epi32(ii1, _mm256_extractf128_si256(_mm256_castps_si256(res), 1));
return _mm256_insertf128_ps(_mm256_castsi256_ps(_mm256_castsi128_si256(res_0)), _mm_castsi128_ps(res_1), 1);
}
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With