By using dropna() method you can drop rows with NaN (Not a Number) and None values from pandas DataFrame. Note that by default it returns the copy of the DataFrame after removing rows. If you wanted to remove from the existing DataFrame, you should use inplace=True .
Use the pandas. DataFrame. dropna() method to drop the rows with infinite values.
One-liner. No transpose needed:
df.loc[~(df==0).all(axis=1)]
And for those who like symmetry, this also works...
df.loc[(df!=0).any(axis=1)]
It turns out this can be nicely expressed in a vectorized fashion:
> df = pd.DataFrame({'a':[0,0,1,1], 'b':[0,1,0,1]})
> df = df[(df.T != 0).any()]
> df
a b
1 0 1
2 1 0
3 1 1
I think this solution is the shortest :
df= df[df['ColName'] != 0]
I look up this question about once a month and always have to dig out the best answer from the comments:
df.loc[(df!=0).any(1)]
Thanks Dan Allan!
Replace the zeros with nan
and then drop the rows with all entries as nan
.
After that replace nan
with zeros.
import numpy as np
df = df.replace(0, np.nan)
df = df.dropna(how='all', axis=0)
df = df.replace(np.nan, 0)
Couple of solutions I found to be helpful while looking this up, especially for larger data sets:
df[(df.sum(axis=1) != 0)] # 30% faster
df[df.values.sum(axis=1) != 0] # 3X faster
Continuing with the example from @U2EF1:
In [88]: df = pd.DataFrame({'a':[0,0,1,1], 'b':[0,1,0,1]})
In [91]: %timeit df[(df.T != 0).any()]
1000 loops, best of 3: 686 µs per loop
In [92]: df[(df.sum(axis=1) != 0)]
Out[92]:
a b
1 0 1
2 1 0
3 1 1
In [95]: %timeit df[(df.sum(axis=1) != 0)]
1000 loops, best of 3: 495 µs per loop
In [96]: %timeit df[df.values.sum(axis=1) != 0]
1000 loops, best of 3: 217 µs per loop
On a larger dataset:
In [119]: bdf = pd.DataFrame(np.random.randint(0,2,size=(10000,4)))
In [120]: %timeit bdf[(bdf.T != 0).any()]
1000 loops, best of 3: 1.63 ms per loop
In [121]: %timeit bdf[(bdf.sum(axis=1) != 0)]
1000 loops, best of 3: 1.09 ms per loop
In [122]: %timeit bdf[bdf.values.sum(axis=1) != 0]
1000 loops, best of 3: 517 µs per loop
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With