Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

dplyr group by, carry forward value from previous group to next

Ok this is the over all view of what i'm trying to achieve with dplyr:

Example

Using dplyr I am making calculations to form new columns.

initial.capital - 
x.long.shares - 
x.end.value - 
x.net.profit - 
new.initial.capital

The code that does this:

# Calculate Share Prices For Each ETF 
# Initialize Start Capital Column 
library(dplyr)
library(data.table)
df$inital.capital <- 10000
output <- df %>%
  dplyr::mutate(RunID = data.table::rleid(x.long)) %>%
  group_by(RunID) %>%
  dplyr::mutate(x.long.shares = ifelse(x.long == 0,0, 
                                       ifelse(row_number() == n(),
                                      first(inital.capital) / first(close.x),0))) %>%
  dplyr::mutate(x.end.value = ifelse(x.long == 0,0, 
                                       ifelse(row_number() == n(),
                                              last(x.long.shares) * last(close.x),0))) %>%
  dplyr::mutate(x.net.profit = ifelse(x.long == 0,0, 
                                     ifelse(row_number() == n(),
                                            last(initial.capital) - last(x.end.value),0))) %>%
  dplyr::mutate(new.initial.capital = ifelse(x.long == 0,0, 
                                      ifelse(row_number() == n(),
                                             last(x.net.profit) + last(inital.capital),0))) %>%

  ungroup() %>%
  select(-RunID)

I am grouping per x.long column. And when grouped. Making calculations from different columns using the first/last positions within the group My basic question is:

In the photo, see red highlight under new.initial.capital column. How can I 'save' this value (10185.33)... and insert it on the NEXT group, saving it under initial.capital column, again highlighted in red (it would replace 10,000 Or storing it on the first line of the group)?

Edit

What I really need to do is save the final value in the new.initial.capital column into a variable. Then this variable can be used in the next group (see code below) The value here will be used as part of the next groups calculations... and then when the end new.initial.capital is updated, then this values goes into the variable, then it carrys to the start of the next group (see code below).. then all the values will update again.... The variable would be placed here:

output <- df %>%
  dplyr::mutate(RunID = data.table::rleid(x.long)) %>%
  group_by(RunID) %>%
  dplyr::mutate(x.long.shares = ifelse(x.long == 0,0, 
                                       ifelse(row_number() == n(),
                                      first(end_of_new.initial.capital_variable_from_previous_group) / first(close.x),0))) %>%

I essentially want to carry over values between dplyr groups. Is this possible? Or can I store it in a variable each time?

Heres some example data that is in the photo: Save to .txt

df <- read.table("your_dir\df.txt",header=TRUE, sep="", stringsAsFactors=FALSE)

    close.x x.long  y.short x.short y.long  inital.capital  x.long.shares   x.end.value x.net.profit    new.initial.capital
37.96   NA  NA  NA  NA  10000   NA  NA  NA  NA
36.52   0   0   0   0   10000   0   0   0   0
38.32   0   0   0   0   10000   0   0   0   0
38.5504 0   0   0   0   10000   0   0   0   0
38.17   0   0   0   0   10000   0   0   0   0
38.85   1   1   0   0   10000   0   0   0   0
38.53   1   1   0   0   10000   0   0   0   0
39.13   1   1   0   0   10000   0   0   0   0
38.13   1   1   0   0   10000   257.4002574 9814.671815 185.3281853 10185.32819
37.01   0   0   1   1   10000   0   0   0   0
36.14   0   0   1   1   10000   0   0   0   0
35.27   0   0   1   1   10000   0   0   0   0
35.13   0   0   1   1   10000   0   0   0   0
32.2    0   0   1   1   10000   0   0   0   0
33.03   1   1   0   0   10000   0   0   0   0
34.94   1   1   0   0   10000   0   0   0   0
34.57   1   1   0   0   10000   0   0   0   0
33.6    1   1   0   0   10000   0   0   0   0
34.34   1   1   0   0   10000   302.7550711 10396.60914 -396.6091432    9603.390857
35.86   0   0   1   1   10000   0   0   0   0

What I have Tried

I tried to make a variable:

inital.capital <- 10000

And insert this in the code...

output <- df %>%
  dplyr::mutate(RunID = data.table::rleid(x.long)) %>%
  group_by(RunID) %>%
  dplyr::mutate(x.long.shares = ifelse(x.long == 0,0, 
                                       ifelse(row_number() == n(),
                                              initial.capital / first(close.x),0))) %>%   # place initial.capital variable.. initialized with 10000
  dplyr::mutate(x.end.value = ifelse(x.long == 0,0, 
                                       ifelse(row_number() == n(),
                                              last(x.long.shares) * last(close.x),0))) %>%
  dplyr::mutate(x.net.profit = ifelse(x.long == 0,0, 
                                     ifelse(row_number() == n(),
                                            last(initial.capital) - last(x.end.value),0))) %>%
  dplyr::mutate(new.initial.capital = ifelse(x.long == 0,0, 
                                      ifelse(row_number() == n(),
                                             last(x.net.profit) + last(inital.capital),0))) %>%
  dplyr::mutate(new.initial.capitals = ifelse(x.long == 0,0, 
                                             ifelse(row_number() == n(),
                                                    inital.capital < - last(new.initial.capital),0))) %>%  # update variable with the final balance of new.inital.capital column

  ungroup() %>%
  select(-RunID)

If I can update the initial.capital variable each time. This then would serve as the 'link' between groups. However, this idea is not currently working in the dplyr setup.

Any assistance appreciated.

like image 979
Andrew Bannerman Avatar asked Nov 05 '17 20:11

Andrew Bannerman


2 Answers

This kind of use of first and last is very untidy, so we'll keep it for the latest step.

First we build intermediate data, following your code, but adding some columns to join later at the right places. I'm not sure if you need to keep all columns, you won't need the second join if not.

library(dplyr)
library(tidyr)

df1 <- df0 %>%
  dplyr::mutate(RunID = data.table::rleid(x.long)) %>%
  group_by(RunID) %>%
  mutate(RunID_f = ifelse(row_number()==1,RunID,NA)) %>%  #  for later merge
  mutate(RunID_l = ifelse(row_number()==n(),RunID,NA))    #  possibly unneeded

Then we build summarized data, I refactored your code a bit as you see, because these operations "should" be rowwise.

summarized_data <- df1 %>%
  filter(x.long !=0) %>%
  summarize_at(vars(close.x,inital.capital),c("first","last")) %>%
  mutate(x.long.share        = inital.capital_first / close.x_first,
         x.end.value         = x.long.share         * close.x_last,
         x.net.profit        = inital.capital_last - x.end.value,
         new.initial.capital = x.net.profit         + inital.capital_last,
         lagged.new.initial.capital = lag(new.initial.capital,1))

# A tibble: 2 x 10
#   RunID close.x_first inital.capital_first close.x_last inital.capital_last x.long.share x.end.value x.net.profit new.initial.capital lagged.new.initial.capital
#   <int>         <dbl>                <int>        <dbl>               <int>        <dbl>       <dbl>        <dbl>               <dbl>                      <dbl>
# 1     3         38.85                10000        38.13               10000     257.4003    9814.672     185.3282           10185.328                         NA
# 2     5         33.03                10000        34.34               10000     302.7551   10396.609    -396.6091            9603.391                   10185.33

Then we join our summarized table to the original, getting advantage of the trick of the firt step. The first join may be skipped if you don't need all columns.

df2 <- df1 %>% ungroup %>%
  left_join(summarized_data %>% select(-lagged.new.initial.capital) ,by=c("RunID_l"="RunID")) %>%      # if you want the other variables, if not, skip the line
  left_join(summarized_data %>% select(RunID,lagged.new.initial.capital) ,by=c("RunID_f"="RunID")) %>%
  mutate(inital.capital = ifelse(is.na(lagged.new.initial.capital),inital.capital,lagged.new.initial.capital)) %>%
  select(close.x:inital.capital) # for readability here

# # A tibble: 20 x 6
# close.x x.long y.short x.short y.long inital.capital
# <dbl>  <int>   <int>   <int>  <int>          <dbl>
#  1 37.9600     NA      NA      NA     NA       10000.00
#  2 36.5200      0       0       0      0       10000.00
#  3 38.3200      0       0       0      0       10000.00
#  4 38.5504      0       0       0      0       10000.00
#  5 38.1700      0       0       0      0       10000.00
#  6 38.8500      1       1       0      0       10000.00
#  7 38.5300      1       1       0      0       10000.00
#  8 39.1300      1       1       0      0       10000.00
#  9 38.1300      1       1       0      0       10000.00
# 10 37.0100      0       0       1      1       10000.00
# 11 36.1400      0       0       1      1       10000.00
# 12 35.2700      0       0       1      1       10000.00
# 13 35.1300      0       0       1      1       10000.00
# 14 32.2000      0       0       1      1       10000.00
# 15 33.0300      1       1       0      0       10185.33
# 16 34.9400      1       1       0      0       10000.00
# 17 34.5700      1       1       0      0       10000.00
# 18 33.6000      1       1       0      0       10000.00
# 19 34.3400      1       1       0      0       10000.00
# 20 35.8600      0       0       1      1       10000.00

data

df<- read.table(text="close.x x.long  y.short x.short y.long  inital.capital  x.long.shares   x.end.value x.net.profit    new.initial.capital
37.96   NA  NA  NA  NA  10000   NA  NA  NA  NA
36.52   0   0   0   0   10000   0   0   0   0
38.32   0   0   0   0   10000   0   0   0   0
38.5504 0   0   0   0   10000   0   0   0   0
38.17   0   0   0   0   10000   0   0   0   0
38.85   1   1   0   0   10000   0   0   0   0
38.53   1   1   0   0   10000   0   0   0   0
39.13   1   1   0   0   10000   0   0   0   0
38.13   1   1   0   0   10000   257.4002574 9814.671815 185.3281853 10185.32819
37.01   0   0   1   1   10000   0   0   0   0
36.14   0   0   1   1   10000   0   0   0   0
35.27   0   0   1   1   10000   0   0   0   0
35.13   0   0   1   1   10000   0   0   0   0
32.2    0   0   1   1   10000   0   0   0   0
33.03   1   1   0   0   10000   0   0   0   0
34.94   1   1   0   0   10000   0   0   0   0
34.57   1   1   0   0   10000   0   0   0   0
33.6    1   1   0   0   10000   0   0   0   0
34.34   1   1   0   0   10000   302.7550711 10396.60914 -396.6091432    9603.390857
35.86   0   0   1   1   10000   0   0   0   0",stringsAsFactors=FALSE,header=TRUE)

df0 <- df %>% select(close.x:inital.capital)
like image 33
Moody_Mudskipper Avatar answered Oct 13 '22 01:10

Moody_Mudskipper


You're using data.table in the question and have tagged the question data.table, so here is a data.table answer. When j evaluates, it's in a static scope where local variables retain their values from the previous group.

Using dummy data to demonstrate :

require(data.table)
set.seed(1)
DT = data.table( long = rep(c(0,1,0,1),each=3),
                 val = sample(5,12,replace=TRUE))
DT
    long val
 1:    0   2
 2:    0   2
 3:    0   3
 4:    1   5
 5:    1   2
 6:    1   5
 7:    0   5
 8:    0   4
 9:    0   4
10:    1   1
11:    1   2
12:    1   1

DT[, v1:=sum(val), by=rleid(long)][]
    long val v1
 1:    0   2  7
 2:    0   2  7
 3:    0   3  7
 4:    1   5 12
 5:    1   2 12
 6:    1   5 12
 7:    0   5 13
 8:    0   4 13
 9:    0   4 13
10:    1   1  4
11:    1   2  4
12:    1   1  4

So far, simple enough.

prev = NA  # initialize previous group value
DT[, v2:={ans<-last(val)/prev; prev<-sum(val); ans}, by=rleid(long)][]
    long val v1         v2
 1:    0   2  7         NA
 2:    0   2  7         NA
 3:    0   3  7         NA
 4:    1   5 12 0.71428571
 5:    1   2 12 0.71428571
 6:    1   5 12 0.71428571
 7:    0   5 13 0.33333333
 8:    0   4 13 0.33333333
 9:    0   4 13 0.33333333
10:    1   1  4 0.07692308
11:    1   2  4 0.07692308
12:    1   1  4 0.07692308

> 3/NA
[1] NA
> 5/7
[1] 0.7142857
> 4/12
[1] 0.3333333
> 1/13
[1] 0.07692308
> prev
[1] NA

Notice that the prev value did not update because prev and ans are local variables inside j's scope that were being updated as each group ran. Just to illustrate, the global prev can be updated from within each group using R's <<- operator :

DT[, v2:={ans<-last(val)/prev; prev<<-sum(val); ans}, by=rleid(long)]
prev
[1] 4

But there's no need to use <<- in data.table as local variables are static (retain their values from previous group). Unless you need to use the final group's value after the query has finished.

like image 180
Matt Dowle Avatar answered Oct 13 '22 01:10

Matt Dowle