In the df
below, I want to reorder bars from highest to lowest in each facet
I tried
df <- df %>% tidyr::gather("var", "value", 2:4)
ggplot(df, aes (x = reorder(id, -value), y = value, fill = id))+
geom_bar(stat="identity")+facet_wrap(~var, ncol =3)
It gave me
It didn't order the bars from highest to lowest in each facet.
I figured out another way to get what I want. I had to plot each variable at a time, then combine all plots using grid.arrange()
#I got this function from @eipi10's answer
#http://stackoverflow.com/questions/38637261/perfectly-align-several-plots/38640937#38640937
#Function to extract legend
# https://github.com/hadley/ggplot2/wiki/Share-a-legend-between-two-ggplot2-graphs
g_legend<-function(a.gplot) {
tmp <- ggplot_gtable(ggplot_build(a.gplot))
leg <- which(sapply(tmp$grobs, function(x) x$name) == "guide-box")
legend <- tmp$grobs[[leg]]
return(legend)
}
p1 <- ggplot(df[df$var== "A", ], aes (x = reorder(id, -value), y = value, fill = id))+
geom_bar(stat="identity") + facet_wrap(~var, ncol =3)
fin_legend <- g_legend(p1)
p1 <- p1 + guides(fill= F)
p2 <- ggplot(df[df$var== "B", ], aes (x = reorder(id, -value), y = value, fill = id))+
geom_bar(stat="identity") + facet_wrap(~var, ncol =3)+guides(fill=FALSE)
p3 <- ggplot(df[df$var== "C", ], aes (x = reorder(id, -value), y = value, fill = id))+
geom_bar(stat="identity") + facet_wrap(~var, ncol =3)+guides(fill=FALSE)
grid.arrange(p1, p2, p3, fin_legend, ncol =4, widths = c(1.5, 1.5, 1.5, 0.5))
The result is what I want
I wonder if there is a straightforward way that can help me order the bars from highest to lowest in all facets without having to plot each variable separtely and then combine them. Any suggestions will be much appreciated.
DATA
df <- read.table(text = c("
id A B C
site1 10 15 20
site2 20 10 30
site3 30 20 25
site4 40 35 40
site5 50 30 35"), header = T)
Reordering in ggplot is done using theme() function. Within this, we use axis. text. x with the appropriate value to re-order accordingly.
facet_wrap() makes a long ribbon of panels (generated by any number of variables) and wraps it into 2d. This is useful if you have a single variable with many levels and want to arrange the plots in a more space efficient manner. You can control how the ribbon is wrapped into a grid with ncol , nrow , as.
There are two types of bar charts: geom_bar() and geom_col() . geom_bar() makes the height of the bar proportional to the number of cases in each group (or if the weight aesthetic is supplied, the sum of the weights). If you want the heights of the bars to represent values in the data, use geom_col() instead.
For grouped bars, there is no space between bars within each group by default. However, you can add some space between bars within a group, by making the width smaller and setting the value for position_dodge to be larger than width.
If you're willing to lose the X axis labels, you can do this by using the actual y values as the x aesthetic, then dropping unused factor levels in each facet:
ggplot(df, aes (x = factor(-value), y = value, fill = id))+
geom_bar(stat="identity", na.rm = TRUE)+
facet_wrap(~var, ncol =3, scales = "free_x", drop = TRUE) +
theme(
axis.text.x = element_blank(),
axis.ticks.x = element_blank()
)
Result:
The loss of x-axis labels is probably not too bad here as you still have the colours to go on (and the x-axis is confusing anyway since it's not consistent across facets).
The approach below uses a specially prepared variable for the x-axis with facet_wrap()
but uses the labels
parameter to scale_x_discrete()
to display the correct x-axis labels:
I'm more fluent in data.table
, so this is used here. Feel free to use what ever package you prefer for data manipulation.
Edit: Removed second dummy variable, only ord
is required
library(data.table)
# reshape from wide to long
molten <- melt(setDT(df), id.vars = "id")
# create dummy var which reflects order when sorted alphabetically
molten[, ord := sprintf("%02i", frank(molten, variable, -value, ties.method = "first"))]
molten
# id variable value ord
# 1: site1 A 10 05
# 2: site2 A 20 04
# 3: site3 A 30 03
# 4: site4 A 40 02
# 5: site5 A 50 01
# 6: site1 B 15 09
# 7: site2 B 10 10
# 8: site3 B 20 08
# 9: site4 B 35 06
#10: site5 B 30 07
#11: site1 C 20 15
#12: site2 C 30 13
#13: site3 C 25 14
#14: site4 C 40 11
#15: site5 C 35 12
library(ggplot2)
# `ord` is plotted on x-axis instead of `id`
ggplot(molten, aes(x = ord, y = value, fill = id)) +
# geom_col() is replacement for geom_bar(stat = "identity")
geom_col() +
# independent x-axis scale in each facet,
# drop absent factor levels (not the case here)
facet_wrap(~ variable, scales = "free_x", drop = TRUE) +
# use named character vector to replace x-axis labels
scale_x_discrete(labels = molten[, setNames(as.character(id), ord)]) +
# replace x-axis title
xlab("id")
df <- read.table(text = "
id A B C
site1 10 15 20
site2 20 10 30
site3 30 20 25
site4 40 35 40
site5 50 30 35", header = T)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With