Why does below code fail to compile?
package main
import (
"fmt"
"unsafe"
)
var x int = 1
const (
ONE int = 1
MIN_INT int = ONE << (unsafe.Sizeof(x)*8 - 1)
)
func main() {
fmt.Println(MIN_INT)
}
I get an error
main.go:12: constant 2147483648 overflows int
Above statement is correct. Yes, 2147483648 overflows int (In 32 bit architecture). But the shift operation should result in a negative value ie -2147483648.
But the same code works, If I change the constants into variables and I get the expected output.
package main
import (
"fmt"
"unsafe"
)
var x int = 1
var (
ONE int = 1
MIN_INT int = ONE << (unsafe.Sizeof(x)*8 - 1)
)
func main() {
fmt.Println(MIN_INT)
}
There is a difference in evaluation between constant and non-constant expression that arises from constants being precise:
Numeric constants represent exact values of arbitrary precision and do not overflow.
Typed constant expressions cannot overflow; if the result cannot be represented by its type, it's a compile-time error (this can be detected at compile-time).
The same thing does not apply to non-constant expressions, as this can't be detected at compile-time (it could only be detected at runtime). Operations on variables can overflow.
In your first example ONE
is a typed constant with type int
. This constant expression:
ONE << (unsafe.Sizeof(x)*8 - 1)
Is a constant shift expression, the following applies: Spec: Constant expressions:
If the left operand of a constant shift expression is an untyped constant, the result is an integer constant; otherwise it is a constant of the same type as the left operand, which must be of integer type.
So the result of the shift expression must fit into an int
because this is a constant expression; but since it doesn't, it's a compile-time error.
In your second example ONE
is not a constant, it's a variable of type int
. So the shift expression here may –and will– overflow, resulting in the expected negative value.
Notes:
Should you change ONE
in the 2nd example to a constant instead of a variable, you'd get the same error (as the expression in the initializer would be a constant expression). Should you change ONE
to a variable in the first example, it wouldn't work as variables cannot be used in constant expressions (it must be a constant expression because it initializes a constant).
You may use the following solution which yields the max and min values of uint
and int
types:
const (
MaxUint = ^uint(0)
MinUint = 0
MaxInt = int(MaxUint >> 1)
MinInt = -MaxInt - 1
)
func main() {
fmt.Printf("uint: %d..%d\n", MinUint, MaxUint)
fmt.Printf("int: %d..%d\n", MinInt, MaxInt)
}
Output (try it on the Go Playground):
uint: 0..4294967295
int: -2147483648..2147483647
The logic behind it lies in the Spec: Constant expressions:
The mask used by the unary bitwise complement operator ^ matches the rule for non-constants: the mask is all 1s for unsigned constants and -1 for signed and untyped constants.
So the typed constant expression ^uint(0)
is of type uint
and is the max value of uint
: it has all its bits set to 1
. Given that integers are represented using 2's complement: shifting this to the left by 1
you'll get the value of max int
, from which the min int
value is -MaxInt - 1
(-1
due to the 0
value).
Why is there no overflow for constant expressions and overflow for non-constant expressions?
The latter is easy: in most other (programming) languages there is overflow. So this behavior is consistent with other languages and it has its benefits.
The real question is the first: why isn't overflow allowed for constant expressions?
Constants in Go are more than values of typed variables: they represent exact values of arbitrary precision. Staying at the word exact, if you have a value that you want to assign to a typed constant, allowing overflow and assigning a completely different value doesn't really live up to exact.
Going forward, this type checking and disallowing overflow can catch mistakes like this one:
type Char byte
var c1 Char = 'a' // OK
var c2 Char = '世' // Compile-time error: constant 19990 overflows Char
What happens here? c1 Char = 'a'
works because 'a'
is a rune
constant, and rune
is alias for int32
, and 'a'
has numeric value 97
which fits into byte
's valid range (which is 0..255
).
But c2 Char = '世'
results in a compile-time error because the rune '世'
has numeric value 19990
which doesn't fit into a byte
. If overflow would be allowed, your code would compile and assign 22
numeric value ('\x16'
) to c2
but obviously this wasn't your intent. By disallowing overflow this mistake is easily caught, and at compile-time.
To verify the results:
var c1 Char = 'a'
fmt.Printf("%d %q %c\n", c1, c1, c1)
// var c2 Char = '世' // Compile-time error: constant 19990 overflows Char
r := '世'
var c2 Char = Char(r)
fmt.Printf("%d %q %c\n", c2, c2, c2)
Output (try it on the Go Playground):
97 'a' a
22 '\x16'
To read more about constants and their philosophy, read the blog post: The Go Blog: Constants
And a couple more questions (+answers) that relate and / or are interesting:
Golang: on-purpose int overflow
How does Go perform arithmetic on constants?
Find address of constant in go
Why do these two float64s have different values?
How to change a float64 number to uint64 in a right way?
Writing powers of 10 as constants compactly
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With