I am looking for the most efficient way to convert a pandas
DataFrame
into a list of typed NamedTuple
- below is a simple example with the expected output.
I would like to get the correct type conversion aligned with the type defined in the dataframe.
from typing import NamedTuple
import pandas as pd
if __name__ == "__main__":
data = [["tom", 10], ["nick", 15], ["juli", 14]]
People = pd.DataFrame(data, columns=["Name", "Age"])
Person = NamedTuple("Person", [("name", str), ("age", int)])
# ...
# ...
# expected output
# [Person(name='tom', age=10), Person(name='nick', age=15), Person(name='juli', age=14)]
Use DataFrame.itertuples
with name
parameter and for omit index add index=false
:
tup = list(people.itertuples(name='Person', index=False))
print(tup)
[Person(Name='tom', Age=10), Person(Name='nick', Age=15), Person(Name='juli', Age=14)]
If need lowercase values name
and age
in namedtuples add rename
:
tup = list(people.rename(columns=str.lower).itertuples(name='Person', index=False))
print(tup)
[Person(name='tom', age=10), Person(name='nick', age=15), Person(name='juli', age=14)]
Use itertuples:
import pandas as pd
data = [["tom", 10], ["nick", 15], ["juli", 14]]
people = pd.DataFrame(data, columns=["Name", "Age"])
result = list(people.itertuples(index=False, name='Person'))
print(result)
Output
[Person(Name='tom', Age=10), Person(Name='nick', Age=15), Person(Name='juli', Age=14)]
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With