Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Combining columns, while ignoring duplicates and NAs

I have a dataframe as follows and I would like to combine two columns, namely Var1 and Var2. I want the combined column (Var3) to contain no duplicates of <alpha><digit>. i.e. if Var1 == A1 and Var2 == A1, hence Var3 == A1 but not Var3 == A1-A1 or if Var1 == A4-E9 and Var2 == A4, hence Var3 == A4-E9 but not Var3 == A4-E9-A4

df <- read.table(header = TRUE, text = 
"id  Var1    Var2
A   A1       A1
B   F2       A2
C   NA       A3
D   A4-E9    A4
E   E5       A5
F   NA       NA
G   B2-R4    A3-B2
H   B3-B4    E1-G5", stringsAsFactors = FALSE)

The following is my code. I would like to improve on its readability as well as get rid of the NA that is present in row 3's entry for Var3, i.e A3-NA.

library(dplyr)
library(tidyr)
df %>% 
  mutate(Var3 = paste(Var1, Var2, sep = "-"))  %>%
  separate_rows(Var3, sep = "-") %>%
  group_by(id, Var3) %>%
  slice(1) %>%
  group_by(id) %>%
  mutate(Var3 = paste(unlist(Var3[!is.na(Var3)]), collapse = "-")) %>%
  slice(1) %>%
  ungroup

Here's my desired output:

# A tibble: 8 x 4
     id  Var1  Var2        Var3
  <chr> <chr> <chr>       <chr>
1     A    A1    A1          A1
2     B    F2    A2       A2-F2
3     C  <NA>    A3          A3
4     D A4-E9    A4       A4-E9
5     E    E5    A5       A5-E5
6     F  <NA>  <NA>        <NA>
7     G B2-R4 A3-B2    A3-B2-R4
8     H B3-B4 E1-G5 B3-B4-E1-G5
like image 444
HNSKD Avatar asked Dec 23 '22 16:12

HNSKD


1 Answers

if 'df1' is the output, then we remove the 'NA' that follows a - with sub

df1 %>% 
    mutate(Var3 = sub("-NA", "", Var3))
# A tibble: 8 x 4
#     id  Var1  Var2        Var3
#  <chr> <chr> <chr>       <chr>
#1     A    A1    A1          A1
#2     B    F2    A2       A2-F2
#3     C  <NA>    A3          A3
#4     D A4-E9    A4       A4-E9
#5     E    E5    A5       A5-E5
#6     F  <NA>  <NA>          NA
#7     G B2-R4 A3-B2    A3-B2-R4
#8     H B3-B4 E1-G5 B3-B4-E1-G5

We can also do this slightly differently with tidyverse by gather into 'long' format, then split the 'value' column using separate_rows, grouped by 'id', summarise the 'Var3' column by pasteing the sorted unique elements of 'Var3' and left_join with the original dataset 'df'

library(tidyverse)
gather(df, key, value, -id) %>%
       separate_rows(value)  %>%
       group_by(id) %>% 
       summarise(Var3 = paste(sort(unique(value)), collapse='-')) %>% 
       mutate(Var3 = replace(Var3, Var3=='', NA)) %>% 
       left_join(df, .)
#   id  Var1  Var2        Var3
#1  A    A1    A1          A1
#2  B    F2    A2       A2-F2
#3  C  <NA>    A3          A3
#4  D A4-E9    A4       A4-E9
#5  E    E5    A5       A5-E5
#6  F  <NA>  <NA>        <NA>
#7  G B2-R4 A3-B2    A3-B2-R4
#8  H B3-B4 E1-G5 B3-B4-E1-G5

NOTE: The %>% makes even a simple code to appear in multiple lines, but if required, we can put all those statements in a single line and term as one-liner


Here is a one-liner

library(data.table)
setDT(df)[, Var3 := paste(sort(unique(unlist(strsplit(unlist(.SD),"-")))), collapse="-"), id]
like image 155
akrun Avatar answered Dec 26 '22 20:12

akrun