Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

"Cloning" row or column vectors

Sometimes it is useful to "clone" a row or column vector to a matrix. By cloning I mean converting a row vector such as

[1, 2, 3]

Into a matrix

[[1, 2, 3],
 [1, 2, 3],
 [1, 2, 3]]

or a column vector such as

[[1],
 [2],
 [3]]

into

[[1, 1, 1]
 [2, 2, 2]
 [3, 3, 3]]

In MATLAB or octave this is done pretty easily:

 x = [1, 2, 3]
 a = ones(3, 1) * x
 a =

    1   2   3
    1   2   3
    1   2   3
    
 b = (x') * ones(1, 3)
 b =

    1   1   1
    2   2   2
    3   3   3

I want to repeat this in numpy, but unsuccessfully

In [14]: x = array([1, 2, 3])
In [14]: ones((3, 1)) * x
Out[14]:
array([[ 1.,  2.,  3.],
       [ 1.,  2.,  3.],
       [ 1.,  2.,  3.]])
# so far so good
In [16]: x.transpose() * ones((1, 3))
Out[16]: array([[ 1.,  2.,  3.]])
# DAMN
# I end up with 
In [17]: (ones((3, 1)) * x).transpose()
Out[17]:
array([[ 1.,  1.,  1.],
       [ 2.,  2.,  2.],
       [ 3.,  3.,  3.]])

Why wasn't the first method (In [16]) working? Is there a way to achieve this task in python in a more elegant way?

like image 244
Boris Gorelik Avatar asked Oct 11 '09 07:10

Boris Gorelik


People also ask

How do you know if a vector is row or column?

A column vector is an nx1 matrix because it always has 1 column and some number of rows. A row vector is a 1xn matrix, as it has 1 row and some number of columns. This is the major difference between a column and a row vector.

What is the difference between a row and column vector?

A matrix uses two indices A(i,j) say (where, in this case, index j can only take on one value), whereas a column vector only has one (this distinction can matter e.g. in computer algebra systems). 1×n (row) matrices and row vectors of length n, e.g. (123).

Can a vector be a row?

Notation. To simplify writing column vectors in-line with other text, sometimes they are written as row vectors with the transpose operation applied to them.


5 Answers

Use numpy.tile:

>>> tile(array([1,2,3]), (3, 1))
array([[1, 2, 3],
       [1, 2, 3],
       [1, 2, 3]])

or for repeating columns:

>>> tile(array([[1,2,3]]).transpose(), (1, 3))
array([[1, 1, 1],
       [2, 2, 2],
       [3, 3, 3]])
like image 185
pv. Avatar answered Oct 11 '22 15:10

pv.


Here's an elegant, Pythonic way to do it:

>>> array([[1,2,3],]*3)
array([[1, 2, 3],
       [1, 2, 3],
       [1, 2, 3]])

>>> array([[1,2,3],]*3).transpose()
array([[1, 1, 1],
       [2, 2, 2],
       [3, 3, 3]])

the problem with [16] seems to be that the transpose has no effect for an array. you're probably wanting a matrix instead:

>>> x = array([1,2,3])
>>> x
array([1, 2, 3])
>>> x.transpose()
array([1, 2, 3])
>>> matrix([1,2,3])
matrix([[1, 2, 3]])
>>> matrix([1,2,3]).transpose()
matrix([[1],
        [2],
        [3]])
like image 44
Peter Avatar answered Oct 11 '22 15:10

Peter


First note that with numpy's broadcasting operations it's usually not necessary to duplicate rows and columns. See this and this for descriptions.

But to do this, repeat and newaxis are probably the best way

In [12]: x = array([1,2,3])

In [13]: repeat(x[:,newaxis], 3, 1)
Out[13]: 
array([[1, 1, 1],
       [2, 2, 2],
       [3, 3, 3]])

In [14]: repeat(x[newaxis,:], 3, 0)
Out[14]: 
array([[1, 2, 3],
       [1, 2, 3],
       [1, 2, 3]])

This example is for a row vector, but applying this to a column vector is hopefully obvious. repeat seems to spell this well, but you can also do it via multiplication as in your example

In [15]: x = array([[1, 2, 3]])  # note the double brackets

In [16]: (ones((3,1))*x).transpose()
Out[16]: 
array([[ 1.,  1.,  1.],
       [ 2.,  2.,  2.],
       [ 3.,  3.,  3.]])
like image 44
tom10 Avatar answered Oct 11 '22 15:10

tom10


Let:

>>> n = 1000
>>> x = np.arange(n)
>>> reps = 10000

Zero-cost allocations

A view does not take any additional memory. Thus, these declarations are instantaneous:

# New axis
x[np.newaxis, ...]

# Broadcast to specific shape
np.broadcast_to(x, (reps, n))

Forced allocation

If you want force the contents to reside in memory:

>>> %timeit np.array(np.broadcast_to(x, (reps, n)))
10.2 ms ± 62.3 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

>>> %timeit np.repeat(x[np.newaxis, :], reps, axis=0)
9.88 ms ± 52.4 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

>>> %timeit np.tile(x, (reps, 1))
9.97 ms ± 77.3 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

All three methods are roughly the same speed.

Computation

>>> a = np.arange(reps * n).reshape(reps, n)
>>> x_tiled = np.tile(x, (reps, 1))

>>> %timeit np.broadcast_to(x, (reps, n)) * a
17.1 ms ± 284 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

>>> %timeit x[np.newaxis, :] * a
17.5 ms ± 300 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

>>> %timeit x_tiled * a
17.6 ms ± 240 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

All three methods are roughly the same speed.


Conclusion

If you want to replicate before a computation, consider using one of the "zero-cost allocation" methods. You won't suffer the performance penalty of "forced allocation".

like image 17
Mateen Ulhaq Avatar answered Oct 11 '22 14:10

Mateen Ulhaq


I think using the broadcast in numpy is the best, and faster

I did a compare as following

import numpy as np
b = np.random.randn(1000)
In [105]: %timeit c = np.tile(b[:, newaxis], (1,100))
1000 loops, best of 3: 354 µs per loop

In [106]: %timeit c = np.repeat(b[:, newaxis], 100, axis=1)
1000 loops, best of 3: 347 µs per loop

In [107]: %timeit c = np.array([b,]*100).transpose()
100 loops, best of 3: 5.56 ms per loop

about 15 times faster using broadcast

like image 9
smartkevin Avatar answered Oct 11 '22 13:10

smartkevin