from math import cos, asin, sqrt, pi def distance(lat1, lon1, lat2, lon2): p = pi/180 a = 0.5 - cos((lat2-lat1)*p)/2 + cos(lat1*p) * cos(lat2*p) * (1-cos((lon2-lon1)*p))/2 return 12742 * asin(sqrt(a)) #2*R*asin... And for the sake of completeness: Haversine on Wikipedia.
What is the Distance Between Lines of Latitude? Lines of latitude are called parallels and in total there are 180 degrees of latitude. The distance between each degree of latitude is about 69 miles (110 kilometers).
The GeoCoordinate class (.NET Framework 4 and higher) already has GetDistanceTo
method.
var sCoord = new GeoCoordinate(sLatitude, sLongitude);
var eCoord = new GeoCoordinate(eLatitude, eLongitude);
return sCoord.GetDistanceTo(eCoord);
The distance is in meters.
You need to reference System.Device.
GetDistance is the best solution, but in many cases we can't use this Method (e.g. Universal App)
Pseudocode of the Algorithm to calculate the distance between to coorindates:
public static double DistanceTo(double lat1, double lon1, double lat2, double lon2, char unit = 'K')
{
double rlat1 = Math.PI*lat1/180;
double rlat2 = Math.PI*lat2/180;
double theta = lon1 - lon2;
double rtheta = Math.PI*theta/180;
double dist =
Math.Sin(rlat1)*Math.Sin(rlat2) + Math.Cos(rlat1)*
Math.Cos(rlat2)*Math.Cos(rtheta);
dist = Math.Acos(dist);
dist = dist*180/Math.PI;
dist = dist*60*1.1515;
switch (unit)
{
case 'K': //Kilometers -> default
return dist*1.609344;
case 'N': //Nautical Miles
return dist*0.8684;
case 'M': //Miles
return dist;
}
return dist;
}
Real World C# Implementation, which makes use of an Extension Methods
Usage:
var distance = new Coordinates(48.672309, 15.695585)
.DistanceTo(
new Coordinates(48.237867, 16.389477),
UnitOfLength.Kilometers
);
Implementation:
public class Coordinates
{
public double Latitude { get; private set; }
public double Longitude { get; private set; }
public Coordinates(double latitude, double longitude)
{
Latitude = latitude;
Longitude = longitude;
}
}
public static class CoordinatesDistanceExtensions
{
public static double DistanceTo(this Coordinates baseCoordinates, Coordinates targetCoordinates)
{
return DistanceTo(baseCoordinates, targetCoordinates, UnitOfLength.Kilometers);
}
public static double DistanceTo(this Coordinates baseCoordinates, Coordinates targetCoordinates, UnitOfLength unitOfLength)
{
var baseRad = Math.PI * baseCoordinates.Latitude / 180;
var targetRad = Math.PI * targetCoordinates.Latitude/ 180;
var theta = baseCoordinates.Longitude - targetCoordinates.Longitude;
var thetaRad = Math.PI * theta / 180;
double dist =
Math.Sin(baseRad) * Math.Sin(targetRad) + Math.Cos(baseRad) *
Math.Cos(targetRad) * Math.Cos(thetaRad);
dist = Math.Acos(dist);
dist = dist * 180 / Math.PI;
dist = dist * 60 * 1.1515;
return unitOfLength.ConvertFromMiles(dist);
}
}
public class UnitOfLength
{
public static UnitOfLength Kilometers = new UnitOfLength(1.609344);
public static UnitOfLength NauticalMiles = new UnitOfLength(0.8684);
public static UnitOfLength Miles = new UnitOfLength(1);
private readonly double _fromMilesFactor;
private UnitOfLength(double fromMilesFactor)
{
_fromMilesFactor = fromMilesFactor;
}
public double ConvertFromMiles(double input)
{
return input*_fromMilesFactor;
}
}
And here, for those still not satisfied (like me), the original code from .NET-Frameworks GeoCoordinate
class, refactored into a standalone method:
public double GetDistance(double longitude, double latitude, double otherLongitude, double otherLatitude)
{
var d1 = latitude * (Math.PI / 180.0);
var num1 = longitude * (Math.PI / 180.0);
var d2 = otherLatitude * (Math.PI / 180.0);
var num2 = otherLongitude * (Math.PI / 180.0) - num1;
var d3 = Math.Pow(Math.Sin((d2 - d1) / 2.0), 2.0) + Math.Cos(d1) * Math.Cos(d2) * Math.Pow(Math.Sin(num2 / 2.0), 2.0);
return 6376500.0 * (2.0 * Math.Atan2(Math.Sqrt(d3), Math.Sqrt(1.0 - d3)));
}
Here is the JavaScript version guys and gals
function distanceTo(lat1, lon1, lat2, lon2, unit) {
var rlat1 = Math.PI * lat1/180
var rlat2 = Math.PI * lat2/180
var rlon1 = Math.PI * lon1/180
var rlon2 = Math.PI * lon2/180
var theta = lon1-lon2
var rtheta = Math.PI * theta/180
var dist = Math.sin(rlat1) * Math.sin(rlat2) + Math.cos(rlat1) * Math.cos(rlat2) * Math.cos(rtheta);
dist = Math.acos(dist)
dist = dist * 180/Math.PI
dist = dist * 60 * 1.1515
if (unit=="K") { dist = dist * 1.609344 }
if (unit=="N") { dist = dist * 0.8684 }
return dist
}
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With