I want to implement the regular applicative instance for lists, using my customly defined list:
import Control.Monad
import Test.QuickCheck
import Test.QuickCheck.Checkers
import Test.QuickCheck.Classes
data List a =
Nil
| Cons a (List a)
deriving (Eq, Ord, Show)
instance Functor List where
fmap f (Cons x xs) = Cons (f x) (fmap f xs)
fmap f Nil = Nil
instance Applicative List where
pure x = Cons x Nil
(<*>) Nil _ = Nil
(<*>) _ Nil = Nil
(<*>) (Cons f fs) xs = (+++) (fmap f xs) (fs <*> xs)
(+++) :: List a -> List a -> List a
(+++) (Cons x Nil) ys = Cons x ys
(+++) (Cons x xs) ys = Cons x xs'
where xs' = (+++) xs ys
instance Arbitrary a => Arbitrary (List a) where
arbitrary = sized go
where go 0 = pure Nil
go n = do
xs <- go (n - 1)
x <- arbitrary
return (Cons x xs)
instance (Eq a) => EqProp (List a) where
(=-=) = eq
main = do
let trigger = undefined :: List (Int, String, Int)
quickBatch $ applicative trigger
My code passes all the applicative tests in Checkers except one, the composition law. No error occurs when testing the composition law, it just never finishes.
Does my code recur eternally in some way I am unable to see, or is it just veeery slow for testing the compositon law?
This is the error message I get if I control-c during the Checkers execution:
applicative:
identity: +++ OK, passed 500 tests.
composition: *** Failed! Exception: 'user interrupt' (after 66 tests):
Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> Nil))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> Nil))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
Cons (-61) (Cons (-24) (Cons 56 (Cons (-10) (Cons 28 (Cons 5 (Cons (-5) (Cons 33 (Cons 18 (Cons 47 (Cons 43 (Cons 43 (Cons (-58) (Cons 35 (Cons (-52) (Cons (-52) (Cons (-41) (Cons 3 (Cons (-7) (Cons (-53) (Cons (-22) (Cons (-20) (Cons (-12) (Cons 46 (Cons (-53) (Cons 35 (Cons (-31) (Cons (-10) (Cons 43 (Cons (-16) (Cons 47 (Cons 53 (Cons 22 (Cons 8 (Cons 1 (Cons (-64) (Cons (-39) (Cons (-57) (Cons 34 (Cons (-31) (Cons 20 (Cons (-39) (Cons (-47) (Cons (-59) (Cons 15 (Cons (-42) (Cons (-31) (Cons 4 (Cons (-62) (Cons (-14) (Cons (-24) (Cons 47 (Cons 42 (Cons 61 (Cons 29 (Cons (-25) (Cons 30 (Cons (-20) (Cons 16 (Cons (-30) (Cons (-38) (Cons (-7) (Cons 16 (Cons 19 (Cons 20 Nil))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
homomorphism: +++ OK, passed 500 tests.
interchange: +++ OK, passed 500 tests.
functor: +++ OK, passed 500 tests.
If one of the functions is slow, I guess it is the (+++)
, but I do not know how GHC executes code well enough to understand why.
Update:
The composition law is:
pure (.) <*> u <*> v <*> w = u <*> (v <*> w)
Which I can show works with my code for simple examples:
Cons (+1) Nil <*> (Cons (*2) Nil <*> Cons 1 (Cons 2 (Cons 3 Nil)))
and
pure (.) <*> Cons (+1) Nil <*> Cons (*2) Nil <*> Cons 1 (Cons 2 (Cons 3 Nil))
Both give the same result, so why the composition law never ends has me stumped. Might this be a problem with the checkers library?
My first thought was that go
was getting a negative argument and looping. However, when modifying it to use trace
and throw an error if n < 0
, I found that it's a lot simpler: your code is just really slow.
Here's the part I modified (go'
was used for tracing, but I short circuited it for benchmarking):
import Debug.Trace
(+++) :: List a -> List a -> List a
{-# INLINE (+++) #-}
(+++) (Cons x Nil) ys = Cons x ys
(+++) (Cons x xs) ys = Cons x xs'
where xs' = (+++) xs ys
maxListSize = 10
instance Arbitrary a => Arbitrary (List a) where
arbitrary = sized go''
where
go'' n = go' $ mod n maxListSize
go' n = if n < 0 then error ("bad n:" ++ show n) else trace (show n ++ " , ") $ go n
go 0 = pure Nil
go n = do
xs <- go' (n - 1)
x <- arbitrary
return (Cons x xs)
Checking the trace for some sort of infinite loop, I found that things never stopped progressing, n
kept decreasing then popping back up for the next test. It just took seconds for a single test when it slowed down. Remember you're trying to run 500 of each test.
My benchmarks aren't rigorous, but here's what I got (x
is modulus, in range [1..18]
):
Quick regression found 5.72238 - 2.8458 x + 0.365263 x^2
. When I ran the trace, n
kept increasing. Although I'm not sure how the tests are being run, if it increases n
each test, then n
would get up to 500
.
The formula isn't really fair, but let's assume it's a decent bound. (I think it should be since the algorithm is O(n^2)
.)
Then running all the tests would take roughly 25 hours, on my machine.
P.S. Since all the tests pass for reasonable bounds on n
and I can't find a bug, I think your code is correct.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With