In order to use the aggregate function for mean in R, you will need to specify the numerical variable on the first argument, the categorical (as a list) on the second and the function to be applied (in this case mean ) on the third. An alternative is to specify a formula of the form: numerical ~ categorical .
The group_by() method is used to group the data contained in the data frame based on the columns specified as arguments to the function call.
Yes, in your formula
, you can cbind
the numeric variables to be aggregated:
aggregate(cbind(x1, x2) ~ year + month, data = df1, sum, na.rm = TRUE)
year month x1 x2
1 2000 1 7.862002 -7.469298
2 2001 1 276.758209 474.384252
3 2000 2 13.122369 -128.122613
...
23 2000 12 63.436507 449.794454
24 2001 12 999.472226 922.726589
See ?aggregate
, the formula
argument and the examples.
With the dplyr
package, you can use summarise_all
, summarise_at
or summarise_if
functions to aggregate multiple variables simultaneously. For the example dataset you can do this as follows:
library(dplyr)
# summarising all non-grouping variables
df2 <- df1 %>% group_by(year, month) %>% summarise_all(sum)
# summarising a specific set of non-grouping variables
df2 <- df1 %>% group_by(year, month) %>% summarise_at(vars(x1, x2), sum)
df2 <- df1 %>% group_by(year, month) %>% summarise_at(vars(-date), sum)
# summarising a specific set of non-grouping variables using select_helpers
# see ?select_helpers for more options
df2 <- df1 %>% group_by(year, month) %>% summarise_at(vars(starts_with('x')), sum)
df2 <- df1 %>% group_by(year, month) %>% summarise_at(vars(matches('.*[0-9]')), sum)
# summarising a specific set of non-grouping variables based on condition (class)
df2 <- df1 %>% group_by(year, month) %>% summarise_if(is.numeric, sum)
The result of the latter two options:
year month x1 x2
<dbl> <dbl> <dbl> <dbl>
1 2000 1 -73.58134 -92.78595
2 2000 2 -57.81334 -152.36983
3 2000 3 122.68758 153.55243
4 2000 4 450.24980 285.56374
5 2000 5 678.37867 384.42888
6 2000 6 792.68696 530.28694
7 2000 7 908.58795 452.31222
8 2000 8 710.69928 719.35225
9 2000 9 725.06079 914.93687
10 2000 10 770.60304 863.39337
# ... with 14 more rows
Note: summarise_each
is deprecated in favor of summarise_all
, summarise_at
and summarise_if
.
As mentioned in my comment above, you can also use the recast
function from the reshape2
-package:
library(reshape2)
recast(df1, year + month ~ variable, sum, id.var = c("date", "year", "month"))
which will give you the same result.
Using the data.table
package, which is fast (useful for larger datasets)
https://github.com/Rdatatable/data.table/wiki
library(data.table)
df2 <- setDT(df1)[, lapply(.SD, sum), by=.(year, month), .SDcols=c("x1","x2")]
setDF(df2) # convert back to dataframe
Using the plyr package
require(plyr)
df2 <- ddply(df1, c("year", "month"), function(x) colSums(x[c("x1", "x2")]))
Using summarize() from the Hmisc package (column headings are messy in my example though)
# need to detach plyr because plyr and Hmisc both have a summarize()
detach(package:plyr)
require(Hmisc)
df2 <- with(df1, summarize( cbind(x1, x2), by=llist(year, month), FUN=colSums))
Where is this year()
function from?
You could also use the reshape2
package for this task:
require(reshape2)
df_melt <- melt(df1, id = c("date", "year", "month"))
dcast(df_melt, year + month ~ variable, sum)
# year month x1 x2
1 2000 1 -80.83405 -224.9540159
2 2000 2 -223.76331 -288.2418017
3 2000 3 -188.83930 -481.5601913
4 2000 4 -197.47797 -473.7137420
5 2000 5 -259.07928 -372.4563522
Interestingly, base R aggregate
's data.frame
method is not showcased here, above the formula interface is used, so for completeness:
aggregate(
x = df1[c("x1", "x2")],
by = df1[c("year", "month")],
FUN = sum, na.rm = TRUE
)
More generic use of aggregate's data.frame method:
Since we are providing a
data.frame
as x
and list
(data.frame
is also a list
) as by
, this is very useful if we need to use it in a dynamic manner, e.g. using other columns to be aggregated and to aggregate by is very simpleFor example like so:
colsToAggregate <- c("x1")
aggregateBy <- c("year", "month")
dummyaggfun <- function(v, na.rm = TRUE) {
c(sum = sum(v, na.rm = na.rm), mean = mean(v, na.rm = na.rm))
}
aggregate(df1[colsToAggregate], by = df1[aggregateBy], FUN = dummyaggfun)
With the dplyr
version >= 1.0.0
, we can also use summarise
to apply function on multiple columns with across
library(dplyr)
df1 %>%
group_by(year, month) %>%
summarise(across(starts_with('x'), sum))
# A tibble: 24 x 4
# Groups: year [2]
# year month x1 x2
# <dbl> <dbl> <dbl> <dbl>
# 1 2000 1 11.7 52.9
# 2 2000 2 -74.1 126.
# 3 2000 3 -132. 149.
# 4 2000 4 -130. 4.12
# 5 2000 5 -91.6 -55.9
# 6 2000 6 179. 73.7
# 7 2000 7 95.0 409.
# 8 2000 8 255. 283.
# 9 2000 9 489. 331.
#10 2000 10 719. 305.
# … with 14 more rows
For a more flexible and faster approach to data aggregation, check out the collap
function in the collapse R package available on CRAN:
library(collapse)
# Simple aggregation with one function
head(collap(df1, x1 + x2 ~ year + month, fmean))
year month x1 x2
1 2000 1 -1.217984 4.008534
2 2000 2 -1.117777 11.460301
3 2000 3 5.552706 8.621904
4 2000 4 4.238889 22.382953
5 2000 5 3.124566 39.982799
6 2000 6 -1.415203 48.252283
# Customized: Aggregate columns with different functions
head(collap(df1, x1 + x2 ~ year + month,
custom = list(fmean = c("x1", "x2"), fmedian = "x2")))
year month fmean.x1 fmean.x2 fmedian.x2
1 2000 1 -1.217984 4.008534 3.266968
2 2000 2 -1.117777 11.460301 11.563387
3 2000 3 5.552706 8.621904 8.506329
4 2000 4 4.238889 22.382953 20.796205
5 2000 5 3.124566 39.982799 39.919145
6 2000 6 -1.415203 48.252283 48.653926
# You can also apply multiple functions to all columns
head(collap(df1, x1 + x2 ~ year + month, list(fmean, fmin, fmax)))
year month fmean.x1 fmin.x1 fmax.x1 fmean.x2 fmin.x2 fmax.x2
1 2000 1 -1.217984 -4.2460775 1.245649 4.008534 -1.720181 10.47825
2 2000 2 -1.117777 -5.0081858 3.330872 11.460301 9.111287 13.86184
3 2000 3 5.552706 0.1193369 9.464760 8.621904 6.807443 11.54485
4 2000 4 4.238889 0.8723805 8.627637 22.382953 11.515753 31.66365
5 2000 5 3.124566 -1.5985090 7.341478 39.982799 31.957653 46.13732
6 2000 6 -1.415203 -4.6072295 2.655084 48.252283 42.809211 52.31309
# When you do that, you can also return the data in a long format
head(collap(df1, x1 + x2 ~ year + month, list(fmean, fmin, fmax), return = "long"))
Function year month x1 x2
1 fmean 2000 1 -1.217984 4.008534
2 fmean 2000 2 -1.117777 11.460301
3 fmean 2000 3 5.552706 8.621904
4 fmean 2000 4 4.238889 22.382953
5 fmean 2000 5 3.124566 39.982799
6 fmean 2000 6 -1.415203 48.252283
Note: You can use base functions like mean, max
etc. with collap
, but fmean, fmax
etc. are C++ based grouped functions offered in the collapse package which are significantly faster (i.e. the performance on large data aggregations is the same as data.table while providing greater flexibility, and these fast grouped functions can also be used without collap
).
Note2: collap
also supports flexible multitype data aggregation, which you can of course do using the custom
argument, but you can also apply functions to numeric and non-numeric columns in a semi-automated way:
# wlddev is a data set of World Bank Indicators provided in the collapse package
head(wlddev)
country iso3c date year decade region income OECD PCGDP LIFEEX GINI ODA
1 Afghanistan AFG 1961-01-01 1960 1960 South Asia Low income FALSE NA 32.292 NA 114440000
2 Afghanistan AFG 1962-01-01 1961 1960 South Asia Low income FALSE NA 32.742 NA 233350000
3 Afghanistan AFG 1963-01-01 1962 1960 South Asia Low income FALSE NA 33.185 NA 114880000
4 Afghanistan AFG 1964-01-01 1963 1960 South Asia Low income FALSE NA 33.624 NA 236450000
5 Afghanistan AFG 1965-01-01 1964 1960 South Asia Low income FALSE NA 34.060 NA 302480000
6 Afghanistan AFG 1966-01-01 1965 1960 South Asia Low income FALSE NA 34.495 NA 370250000
# This aggregates the data, applying the mean to numeric and the statistical mode to categorical columns
head(collap(wlddev, ~ iso3c + decade, FUN = fmean, catFUN = fmode))
country iso3c date year decade region income OECD PCGDP LIFEEX GINI ODA
1 Aruba ABW 1961-01-01 1962.5 1960 Latin America & Caribbean High income FALSE NA 66.58583 NA NA
2 Aruba ABW 1967-01-01 1970.0 1970 Latin America & Caribbean High income FALSE NA 69.14178 NA NA
3 Aruba ABW 1976-01-01 1980.0 1980 Latin America & Caribbean High income FALSE NA 72.17600 NA 33630000
4 Aruba ABW 1987-01-01 1990.0 1990 Latin America & Caribbean High income FALSE 23677.09 73.45356 NA 41563333
5 Aruba ABW 1996-01-01 2000.0 2000 Latin America & Caribbean High income FALSE 26766.93 73.85773 NA 19857000
6 Aruba ABW 2007-01-01 2010.0 2010 Latin America & Caribbean High income FALSE 25238.80 75.01078 NA NA
# Note that by default (argument keep.col.order = TRUE) the column order is also preserved
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With