Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Replacing NAs with latest non-NA value

People also ask

How do I replace NAS with zeros?

To replace NA with 0 in an R data frame, use is.na() function and then select all those values with NA and assign them to 0.

Which function is used to replace the NA values with the most recent values?

locf() function from the zoo package to carry the last observation forward to replace your NA values.

How do I replace missing values in NA with R?

So, how do you replace missing values with basic R code? To replace the missing values, you first identify the NA's with the is.na() function and the $-operator. Then, you use the min() function to replace the NA's with the lowest value.

How do you know if a value is na?

To test if a value is NA, use is.na(). The function is.na(x) returns a logical vector of the same size as x with value TRUE if and only if the corresponding element in x is NA. NaN means Not A Number, and is for (IEEE) arithmetic purposes. Usually NaN comes from 0/0.


You probably want to use the na.locf() function from the zoo package to carry the last observation forward to replace your NA values.

Here is the beginning of its usage example from the help page:

library(zoo)

az <- zoo(1:6)

bz <- zoo(c(2,NA,1,4,5,2))

na.locf(bz)
1 2 3 4 5 6 
2 2 1 4 5 2 

na.locf(bz, fromLast = TRUE)
1 2 3 4 5 6 
2 1 1 4 5 2 

cz <- zoo(c(NA,9,3,2,3,2))

na.locf(cz)
2 3 4 5 6 
9 3 2 3 2 

Sorry for digging up an old question. I couldn't look up the function to do this job on the train, so I wrote one myself.

I was proud to find out that it's a tiny bit faster.
It's less flexible though.

But it plays nice with ave, which is what I needed.

repeat.before = function(x) {   # repeats the last non NA value. Keeps leading NA
    ind = which(!is.na(x))      # get positions of nonmissing values
    if(is.na(x[1]))             # if it begins with a missing, add the 
          ind = c(1,ind)        # first position to the indices
    rep(x[ind], times = diff(   # repeat the values at these indices
       c(ind, length(x) + 1) )) # diffing the indices + length yields how often 
}                               # they need to be repeated

x = c(NA,NA,'a',NA,NA,NA,NA,NA,NA,NA,NA,'b','c','d',NA,NA,NA,NA,NA,'e')  
xx = rep(x, 1000000)  
system.time({ yzoo = na.locf(xx,na.rm=F)})  
## user  system elapsed   
## 2.754   0.667   3.406   
system.time({ yrep = repeat.before(xx)})  
## user  system elapsed   
## 0.597   0.199   0.793   

Edit

As this became my most upvoted answer, I was reminded often that I don't use my own function, because I often need zoo's maxgap argument. Because zoo has some weird problems in edge cases when I use dplyr + dates that I couldn't debug, I came back to this today to improve my old function.

I benchmarked my improved function and all the other entries here. For the basic set of features, tidyr::fill is fastest while also not failing the edge cases. The Rcpp entry by @BrandonBertelsen is faster still, but it's inflexible regarding the input's type (he tested edge cases incorrectly due to a misunderstanding of all.equal).

If you need maxgap, my function below is faster than zoo (and doesn't have the weird problems with dates).

I put up the documentation of my tests.

new function

repeat_last = function(x, forward = TRUE, maxgap = Inf, na.rm = FALSE) {
    if (!forward) x = rev(x)           # reverse x twice if carrying backward
    ind = which(!is.na(x))             # get positions of nonmissing values
    if (is.na(x[1]) && !na.rm)         # if it begins with NA
        ind = c(1,ind)                 # add first pos
    rep_times = diff(                  # diffing the indices + length yields how often
        c(ind, length(x) + 1) )          # they need to be repeated
    if (maxgap < Inf) {
        exceed = rep_times - 1 > maxgap  # exceeding maxgap
        if (any(exceed)) {               # any exceed?
            ind = sort(c(ind[exceed] + 1, ind))      # add NA in gaps
            rep_times = diff(c(ind, length(x) + 1) ) # diff again
        }
    }
    x = rep(x[ind], times = rep_times) # repeat the values at these indices
    if (!forward) x = rev(x)           # second reversion
    x
}

I've also put the function in my formr package (Github only).


a data.table solution:

dt <- data.table(y = c(NA, 2, 2, NA, NA, 3, NA, 4, NA, NA))
dt[, y_forward_fill := y[1], .(cumsum(!is.na(y)))]
dt
     y y_forward_fill
 1: NA             NA
 2:  2              2
 3:  2              2
 4: NA              2
 5: NA              2
 6:  3              3
 7: NA              3
 8:  4              4
 9: NA              4
10: NA              4

this approach could work with forward filling zeros as well:

dt <- data.table(y = c(0, 2, -2, 0, 0, 3, 0, -4, 0, 0))
dt[, y_forward_fill := y[1], .(cumsum(y != 0))]
dt
     y y_forward_fill
 1:  0              0
 2:  2              2
 3: -2             -2
 4:  0             -2
 5:  0             -2
 6:  3              3
 7:  0              3
 8: -4             -4
 9:  0             -4
10:  0             -4

this method becomes very useful on data at scale and where you would want to perform a forward fill by group(s), which is trivial with data.table. just add the group(s) to the by clause prior to the cumsum logic.

dt <- data.table(group = sample(c('a', 'b'), 20, replace = TRUE), y = sample(c(1:4, rep(NA, 4)), 20 , replace = TRUE))
dt <- dt[order(group)]
dt[, y_forward_fill := y[1], .(group, cumsum(!is.na(y)))]
dt
    group  y y_forward_fill
 1:     a NA             NA
 2:     a NA             NA
 3:     a NA             NA
 4:     a  2              2
 5:     a NA              2
 6:     a  1              1
 7:     a NA              1
 8:     a  3              3
 9:     a NA              3
10:     a NA              3
11:     a  4              4
12:     a NA              4
13:     a  1              1
14:     a  4              4
15:     a NA              4
16:     a  3              3
17:     b  4              4
18:     b NA              4
19:     b NA              4
20:     b  2              2

You can use the data.table function nafill, available from data.table >= 1.12.3.

library(data.table)
nafill(y, type = "locf")
# [1] NA  2  2  2  2  3  3  4  4  4

If your vector is a column in a data.table, you can also update it by reference with setnafill:

d <- data.table(x = 1:10, y)
setnafill(d, type = "locf", cols = "y")
d
#      x  y
#  1:  1 NA
#  2:  2  2
#  3:  3  2
#  4:  4  2
#  5:  5  2
#  6:  6  3
#  7:  7  3
#  8:  8  4
#  9:  9  4
# 10: 10  4

If you have NA in several columns...

d <- data.table(x = c(1, NA, 2), y = c(2, 3, NA), z = c(4, NA, 5))
#     x  y  z
# 1:  1  2  4
# 2: NA  3 NA
# 3:  2 NA  5

...you can fill them by reference in one go:

setnafill(d, type = "locf")
d
#    x y z
# 1: 1 2 4
# 2: 1 3 4
# 3: 2 3 5

Note that:

Only double and integer data types are currently [data.table 1.12.6] supported.

The functionality will most likely soon be extended; see the open issue nafill, setnafill for character, factor and other types, where you also find a temporary workaround.


Dealing with a big data volume, in order to be more efficient, we can use the data.table package.

require(data.table)
replaceNaWithLatest <- function(
  dfIn,
  nameColNa = names(dfIn)[1]
){
  dtTest <- data.table(dfIn)
  setnames(dtTest, nameColNa, "colNa")
  dtTest[, segment := cumsum(!is.na(colNa))]
  dtTest[, colNa := colNa[1], by = "segment"]
  dtTest[, segment := NULL]
  setnames(dtTest, "colNa", nameColNa)
  return(dtTest)
}

Throwing my hat in:

library(Rcpp)
cppFunction('IntegerVector na_locf(IntegerVector x) {
  int n = x.size();

  for(int i = 0; i<n; i++) {
    if((i > 0) && (x[i] == NA_INTEGER) & (x[i-1] != NA_INTEGER)) {
      x[i] = x[i-1];
    }
  }
  return x;
}')

Setup a basic sample and a benchmark:

x <- sample(c(1,2,3,4,NA))

bench_em <- function(x,count = 10) {
  x <- sample(x,count,replace = TRUE)
  print(microbenchmark(
    na_locf(x),
    replace_na_with_last(x),
    na.lomf(x),
    na.locf(x),
    repeat.before(x)
  ), order = "mean", digits = 1)
}

And run some benchmarks:

bench_em(x,1e6)

Unit: microseconds
                    expr   min    lq  mean median    uq   max neval
              na_locf(x)   697   798   821    814   821 1e+03   100
              na.lomf(x)  3511  4137  5002   4214  4330 1e+04   100
 replace_na_with_last(x)  4482  5224  6473   5342  5801 2e+04   100
        repeat.before(x)  4793  5044  6622   5097  5520 1e+04   100
              na.locf(x) 12017 12658 17076  13545 19193 2e+05   100

Just in case:

all.equal(
     na_locf(x),
     replace_na_with_last(x),
     na.lomf(x),
     na.locf(x),
     repeat.before(x)
)
[1] TRUE

Update

For a numeric vector, the function is a bit different:

NumericVector na_locf_numeric(NumericVector x) {
  int n = x.size();
  LogicalVector ina = is_na(x);

  for(int i = 1; i<n; i++) {
    if((ina[i] == TRUE) & (ina[i-1] != TRUE)) {
      x[i] = x[i-1];
    }
  }
  return x;
}