Press Ctrl + Shift + Esc to launch Task Manager. Or, right-click the Taskbar and select Task Manager. Select the Performance tab and click Memory in the left panel. The Memory window lets you see your current RAM usage, check RAM speed, and view other memory hardware specifications.
In a modern 64-bit JDK, an object has a 12-byte header, padded to a multiple of 8 bytes, so the minimum object size is 16 bytes. For 32-bit JVMs, the overhead is 8 bytes, padded to a multiple of 4 bytes. (From Dmitry Spikhalskiy's answer, Jayen's answer, and JavaWorld.)
Stack memory stores primitive types and the addresses of objects. The object values are stored in heap memory. An object reference on the stack is only an address that refers to the place in heap memory where that object is kept.
The deep\_getsizeof() Function getsizeof() can only tell you how much memory a primitive object takes, let's take a look at a more adequate solution. The deep\_getsizeof() function drills down recursively and calculates the actual memory usage of a Python object graph.
some time ago I stole this little nugget from here:
sort( sapply(ls(),function(x){object.size(get(x))}))
it has served me well
1. by object size
to get memory allocation on an object-by-object basis, call object.size() and pass in the object of interest:
object.size(My_Data_Frame)
(unless the argument passed in is a variable, it must be quoted, or else wrapped in a get call.)variable name, then omit the quotes,
you can loop through your namespace and get the size of all of the objects in it, like so:
for (itm in ls()) {
print(formatC(c(itm, object.size(get(itm))),
format="d",
big.mark=",",
width=30),
quote=F)
}
2. by object type
to get memory usage for your namespace, by object type, use memory.profile()
memory.profile()
NULL symbol pairlist closure environment promise language
1 9434 183964 4125 1359 6963 49425
special builtin char logical integer double complex
173 1562 20652 7383 13212 4137 1
(There's another function, memory.size() but i have heard and read that it only seems to work on Windows. It just returns a value in MB; so to get max memory used at any time in the session, use memory.size(max=T)).
You could try the lsos()
function from this question:
R> a <- rnorm(100)
R> b <- LETTERS
R> lsos()
Type Size Rows Columns
b character 1496 26 NA
a numeric 840 100 NA
R>
This question was posted and got legitimate answers so much ago, but I want to let you know another useful tips to get the size of an object using a library called gdata and its ll()
function.
library(gdata)
ll() # return a dataframe that consists of a variable name as rownames, and class and size (in KB) as columns
subset(ll(), KB > 1000) # list of object that have over 1000 KB
ll()[order(ll()$KB),] # sort by the size (ascending)
another (slightly prettier) option using dplyr
data.frame('object' = ls()) %>%
dplyr::mutate(size_unit = object %>%sapply(. %>% get() %>% object.size %>% format(., unit = 'auto')),
size = as.numeric(sapply(strsplit(size_unit, split = ' '), FUN = function(x) x[1])),
unit = factor(sapply(strsplit(size_unit, split = ' '), FUN = function(x) x[2]), levels = c('Gb', 'Mb', 'Kb', 'bytes'))) %>%
dplyr::arrange(unit, dplyr::desc(size)) %>%
dplyr::select(-size_unit)
A data.table function that separates memory and unit for easier sorting:
ls.obj <- {as.data.table(sapply(ls(), function(x){format(object.size(get(x)), nsmall=3,digits=3,unit="Mb")}),keep.rownames=TRUE)[, c("mem","unit") := tstrsplit(V2, " ", fixed=TRUE)][, setnames(.SD,"V1","obj")][,.(obj,mem=as.numeric(mem),unit)][order(-mem)]}
ls.obj
obj mem unit
1: obj1 848.283 Mb
2: obj2 37.705 Mb
...
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With