I know that add is faster as compared to mul function.
I want to know how to go about using add instead of mul in the following code in order to make it more efficient.
Sample code:
mov eax, [ebp + 8] #eax = x1
mov ecx, [ebp + 12] #ecx = x2
mov edx, [ebp + 16] #edx = y1
mov ebx, [ebp + 20] #ebx = y2
sub eax,ecx #eax = x1-x2
sub edx,ebx #edx = y1-y2
mul edx #eax = (x1-x2)*(y1-y2)
add is faster than mul, but if you want to multiply two general values, mul is far faster than any loop iterating add operations.
You can't seriously use add to make that code go faster than it will with mul. If you needed to multiply by some small constant value (such as 2), then maybe you could use add to speed things up. But for the general case - no.
If you are multiplying two values that you don't know in advance, it is effectively impossible to beat the multiply instruction in x86 assembler.
If you know the value of one of the operands in advance, you may be able beat the multiply instruction by using a small number of adds. This works particularly well when the known operand is small, and only has a few bits in its binary representation. To multiply an unknown value x by a known value consisting 2^p+2^q+...2^r you simply add x*2^p+x*2^q+..x*2*r if bits p,q, ... and r are set. This is easily accomplished in assembler by left shifting and adding:
; x in EDX
; product to EAX
xor eax,eax
shl edx,r ; x*2^r
add eax,edx
shl edx,q-r ; x*2^q
add eax,edx
shl edx,p-q ; x*2^p
add eax,edx
The key problem with this is that it takes at least 4 clocks to do this, assuming a superscalar CPU constrained by register dependencies. Multiply typically takes 10 or fewer clocks on modern CPUs, and if this sequence gets longer than that in time you might as well do a multiply.
To multiply by 9:
mov eax,edx ; same effect as xor eax,eax/shl edx 1/add eax,edx
shl edx,3 ; x*2^3
add eax,edx
This beats multiply; should only take 2 clocks.
What is less well known is the use of the LEA (load effective address) instruction, to accomplish fast multiply-by-small-constant. LEA which takes only a single clock worst case its execution time can often by overlapped with other instructions by superscalar CPUs.
LEA is essentially "add two values with small constant multipliers". It computes t=2^k*x+y for k=1,2,3 (see the Intel reference manual) for t, x and y being any register. If x==y, you can get 1,2,3,4,5,8,9 times x, but using x and y as seperate registers allows for intermediate results to be combined and moved to other registers (e.g., to t), and this turns out to be remarkably handy. Using it, you can accomplish a multiply by 9 using a single instruction:
lea eax,[edx*8+edx] ; takes 1 clock
Using LEA carefully, you can multiply by a variety of peculiar constants in a small number of cycles:
lea eax,[edx*4+edx] ; 5 * edx
lea eax,[eax*2+edx] ; 11 * edx
lea eax,[eax*4] ; 44 * edx
To do this, you have to decompose your constant multiplier into various factors/sums involving 1,2,3,4,5,8 and 9. It is remarkable how many small constants you can do this for, and still only use 3-4 instructions.
If you allow the use other typically single-clock instructions (e.g, SHL/SUB/NEG/MOV) you can multiply by some constant values that pure LEA can't do as efficiently by itself. To multiply by 31:
lea eax,[4*edx]
lea eax,[8*eax] ; 32*edx
sub eax,edx; 31*edx ; 3 clocks
The corresponding LEA sequence is longer:
lea eax,[edx*4+edx]
lea eax,[edx*2+eax] ; eax*7
lea eax,[eax*2+edx] ; eax*15
lea eax,[eax*2+edx] ; eax*31 ; 4 clocks
Figuring out these sequences is a bit tricky, but you can set up an organized attack.
Since LEA, SHL, SUB, NEG, MOV are all single-clock instructions worst case, and zero clocks if they have no dependences on other instructions, you can compute the exeuction cost of any such sequence. This means you can implement a dynamic programmming algorithm to generate the best possible sequence of such instructions. This is only useful if the clock count is smaller than the integer multiply for your particular CPU (I use 5 clocks as rule of thumb), and it doesn't use up all the registers, or at least it doesn't use up registers that are already busy (avoiding any spills).
I've actually built this into our PARLANSE compiler, and it is very effective for computing offsets into arrays of structures A[i], where the size of the structure element in A is the known constant. A clever person would possibly cache the answer so it doesn't have to be recomputed each time multiplying the same constant occurs; I didn't actually do that because the time to generate such sequences is less than you'd expect.
Its is mildly interesting to print out the sequences of instructions needed to multiply by all constants from 1 to 10000. Most of them can be done in 5-6 instructions worst case. As a consequence, the PARLANSE compiler hardly ever uses an actual multiply when indexing even the nastiest arrays of nested structures.
Unless your multiplications are fairly simplistic, the add
most likely won't outperform a mul
. Having said that, you can use add
to do multiplications:
Multiply by 2:
add eax,eax ; x2
Multiply by 4:
add eax,eax ; x2
add eax,eax ; x4
Multiply by 8:
add eax,eax ; x2
add eax,eax ; x4
add eax,eax ; x8
They work nicely for powers of two. I'm not saying they're faster. They were certainly necessary in the days before fancy multiplication instructions. That's from someone whose soul was forged in the hell-fires that were the Mostek 6502, Zilog z80 and RCA1802 :-)
You can even multiply by non-powers by simply storing interim results:
Multiply by 9:
push ebx ; preserve
push eax ; save for later
add eax,eax ; x2
add eax,eax ; x4
add eax,eax ; x8
pop ebx ; get original eax into ebx
add eax,ebx ; x9
pop ebx ; recover original ebx
I generally suggest that you write your code primarily for readability and only worry about performance when you need it. However, if you're working in assembler, you may well already at that point. But I'm not sure my "solution" is really applicable to your situation since you have an arbitrary multiplicand.
You should, however, always profile your code in the target environment to ensure that what you're doing is actually faster. Assembler doesn't change that aspect of optimisation at all.
If you really want to see some more general purpose assembler for using add
to do multiplication, here's a routine that will take two unsigned values in ax
and bx
and return the product in ax
. It will not handle overflow elegantly.
START: MOV AX, 0007 ; Load up registers
MOV BX, 0005
CALL MULT ; Call multiply function.
HLT ; Stop.
MULT: PUSH BX ; Preserve BX, CX, DX.
PUSH CX
PUSH DX
XOR CX,CX ; CX is the accumulator.
CMP BX, 0 ; If multiplying by zero, just stop.
JZ FIN
MORE: PUSH BX ; Xfer BX to DX for bit check.
POP DX
AND DX, 0001 ; Is lowest bit 1?
JZ NOADD ; No, do not add.
ADD CX,AX
NOADD: SHL AX,1 ; Shift AX left (double).
SHR BX,1 ; Shift BX right (integer halve, next bit).
JNZ MORE ; Keep going until no more bits in BX.
FIN: PUSH CX ; Xfer product from CX to AX.
POP AX
POP DX ; Restore registers and return.
POP CX
POP BX
RET
It relies on the fact that 123
multiplied by 456
is identical to:
123 x 6
+ 1230 x 5
+ 12300 x 4
which is the same way you were taught multiplication back in grade/primary school. It's easier with binary since you're only ever multiplying by zero or one (in other words, either adding or not adding).
It's pretty old-school x86 (8086, from a DEBUG session - I can't believe they still actually include that thing in XP) since that was about the last time I coded directly in assembler. There's something to be said for high level languages :-)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With