What is the easiest way to accomplish the following in a Mathematica clone or in any version of Lisp(any language is probably okay actually even Haskell)? It doesn't appear any lisps have a similar replace function.
Replace[{
f[{x, "[", y, "]"}],
f@f[{x, "[", y, y2, "]"}]
}
, f[{x_, "[", y__, "]"}] :> x[y],
Infinity]
and a return value of {x[y], f[x[y, y2]]}
It replaces all instances of f[{x_, "[", y__, "]"}]
in args where x_
represents a single variable and y__
represents one or more variables.
In lisp the function and replacement would probably be the equivalent(forgive me I am not the best with Lisp). I'm looking for a function of the form (replace list search replace)
.
(replace
'(
(f (x "[" y "]"))
(f (f '(x "[" y y2 "]")))
)
'(f (x_ "[" y__ "]"))
'(x y)
)
and get a return value of ((x y) (f (x y y2)))
.
You would open the Source popup menu in the Mathematica source editor by right-clicking and choosing Source > Expression Find/Replace. You would then fill in the dialog as follows. When you click Preview this allows you to preview all the changes that were introduced. From this you can accept or reject the changes.
to clear a value) x == val — test equality or represent a symbolic equation (!= for unequal) lhs := rhs — function etc. definition.
The module uses temporary variables so that the values of the input variables are not overwritten when the module executes. Notice that the commands in the module are exactly the commands we used in the previous section with different variable names. tests to determine if the variables, var1 and var2, are equal.
Let's give it another try.
First, install quicklisp
and use it to fetch, install and load optima
and alexandria
.
(ql:quickload :optima)
(ql:quickload :alexandria)
(use-package :alexandria)
The functions from alexandria
referenced below are ensure-list
and last-elt
. If you don't have them installed, you can use the following definitions:
(defun ensure-list (list) (if (listp list) list (list list)))
(defun last-elt (list) (car (last list)))
We define rules as functions from one form to another.
Below, the function tries to destructure the input as (f (<X> "[" <ARGS> "]")
, where <ARGS>
is zero or more form. If destructuring fails, we return NIL
(we expect non-matching filters to return NIL
hereafter).
(defun match-ugly-funcall (form)
(optima:match form
((list 'f (cons x args))
(unless (and (string= "[" (first args))
(string= "]" (last-elt args)))
(optima:fail))
`(,x ,@(cdr (butlast args))))))
(match-ugly-funcall '(f (g "[" 1 3 5 4 8 "]")))
; => (G 1 3 5 4 8)
Then, we mimic Mathematica's Replace with this function, which takes a form and a list of rules to be tried. It is possible to pass a single rule (thanks to ensure-list
). If a list of list of rules is given, a list of matches should be returned (to be done).
(defun match-replace (form rules &optional (levelspec '(0)))
(setf rules (ensure-list rules))
(multiple-value-bind (match-levelspec-p recurse-levelspec-p)
(optima:ematch levelspec
((list n1 n2) (if (some #'minusp (list n1 n2))
(optima:fail)
(values (lambda (d) (<= n1 d n2))
(lambda (d) (< d n2)))))
((list n) (if (minusp n)
(optima:fail)
(values (lambda (d) (= d n))
(lambda (d) (< d n)))))
(:infinity (values (constantly t) (constantly t))))
(labels
((do-replace (form depth)
(let ((result
(and (funcall match-levelspec-p depth)
(some (lambda (r) (funcall r form)) rules))))
(cond
(result (values result t))
((and (listp form)
(funcall recurse-levelspec-p depth))
(incf depth)
(do (newlist
(e (pop form) (pop form)))
((endp form) (values form nil))
(multiple-value-bind (result matchedp) (do-replace e depth)
(if matchedp
(return (values (nconc (nreverse newlist)
(list* result form)) t))
(push e newlist)))))
(t (values form nil))))))
(do-replace form 0))))
And a test:
(match-replace '(a b (f (x "[" 1 2 3 "]")) c d)
#'match-ugly-funcall
:infinity)
; => (A B (X 1 2 3) C D)
; T
In order to replace all expressions instead of the first matching one, use this instead:
(defun match-replace-all (form rules &optional (levelspec '(0)))
(setf rules (ensure-list rules))
(multiple-value-bind (match-levelspec-p recurse-levelspec-p)
(optima:ematch levelspec
((list n1 n2) (if (some #'minusp (list n1 n2))
(optima:fail)
(values (lambda (d) (<= n1 d n2))
(lambda (d) (< d n2)))))
((list n) (if (minusp n)
(optima:fail)
(values (lambda (d) (= d n))
(lambda (d) (< d n)))))
(:infinity (values (constantly t) (constantly t))))
(labels
((do-replace (form depth)
(let ((result
(and (funcall match-levelspec-p depth)
(some (lambda (r) (funcall r form)) rules))))
(cond
(result result)
((and (listp form)
(funcall recurse-levelspec-p depth))
(incf depth)
(mapcar (lambda (e) (do-replace e depth)) form))
(t form)))))
(do-replace form 0))))
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With