It seems state-of-art compilers treat arguments passed by stack as read-only. Note that in the x86 calling convention, the caller pushes arguments onto the stack and the callee uses the arguments in the stack. For example, the following C code:
extern int goo(int *x);
int foo(int x, int y) {
goo(&x);
return x;
}
is compiled by clang -O3 -c g.c -S -m32
in OS X 10.10 into:
.section __TEXT,__text,regular,pure_instructions
.macosx_version_min 10, 10
.globl _foo
.align 4, 0x90
_foo: ## @foo
## BB#0:
pushl %ebp
movl %esp, %ebp
subl $8, %esp
movl 8(%ebp), %eax
movl %eax, -4(%ebp)
leal -4(%ebp), %eax
movl %eax, (%esp)
calll _goo
movl -4(%ebp), %eax
addl $8, %esp
popl %ebp
retl
.subsections_via_symbols
Here, the parameter x
(8(%ebp)
) is first loaded into %eax
; and then stored in -4(%ebp)
; and the address -4(%ebp)
is stored in %eax
; and %eax
is passed to the function goo
.
I wonder why Clang generates code that copy the value stored in 8(%ebp)
to -4(%ebp)
, rather than just passing the address 8(%ebp)
to the function goo
. It would save memory operations and result in a better performance. I observed a similar behaviour in GCC too (under OS X). To be more specific, I wonder why compilers do not generate:
.section __TEXT,__text,regular,pure_instructions
.macosx_version_min 10, 10
.globl _foo
.align 4, 0x90
_foo: ## @foo
## BB#0:
pushl %ebp
movl %esp, %ebp
subl $8, %esp
leal 8(%ebp), %eax
movl %eax, (%esp)
calll _goo
movl 8(%ebp), %eax
addl $8, %esp
popl %ebp
retl
.subsections_via_symbols
I searched for documents if the x86 calling convention demands the passed arguments to be read-only, but I couldn't find anything on the issue. Does anybody have any thought on this issue?
The rules for C are that parameters must be passed by value. A compiler converts from one language (with one set of rules) to a different language (potentially with a completely different set of rules). The only limitation is that the behaviour remains the same. The rules of the C language do not apply to the target language (e.g. assembly).
What this means is that if a compiler feels like generating assembly language where parameters are passed by reference and are not passed by value; then this is perfectly legal (as long as the behaviour remains the same).
The real limitation has nothing to do with C at all. The real limitation is linking. So that different object files can be linked together, standards are needed to ensure that whatever the caller in one object file expects matches whatever the callee in another object file provides. This is what's known as the ABI. In some cases (e.g. 64-bit 80x86) there are multiple different ABIs for the exact same architecture.
You can even invent your own ABI that's radically different (and implement your own tools that support your own radically different ABI) and that's perfectly legal as far as the C standards go; even if your ABI requires "pass by reference" for everything (as long as the behaviour remains the same).
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With