I am trying to define a UserDefinedAggregateFunction(UDAF) in Spark, which counts the number of occurrences for each unique values in a column of a group.
This is an example:
Suppose I have a dataframe df
like this,
+----+----+
|col1|col2|
+----+----+
| a| a1|
| a| a1|
| a| a2|
| b| b1|
| b| b2|
| b| b3|
| b| b1|
| b| b1|
+----+----+
I will have a UDAF DistinctValues
val func = new DistinctValues
Then I apply it to the dataframe df
val agg_value = df.groupBy("col1").agg(func(col("col2")).as("DV"))
I am expecting to have something like this:
+----+--------------------------+
|col1|DV |
+----+--------------------------+
| a| Map(a1->2, a2->1) |
| b| Map(b1->3, b2->1, b3->1)|
+----+--------------------------+
So I came out with a UDAF like this,
import org.apache.spark.sql.expressions.MutableAggregationBuffer
import org.apache.spark.sql.expressions.UserDefinedAggregateFunction
import org.apache.spark.sql.Row
import org.apache.spark.sql.types.StructType
import org.apache.spark.sql.types.StructField
import org.apache.spark.sql.types.DataType
import org.apache.spark.sql.types.ArrayType
import org.apache.spark.sql.types.StringType
import org.apache.spark.sql.types.MapType
import org.apache.spark.sql.types.LongType
import Array._
class DistinctValues extends UserDefinedAggregateFunction {
def inputSchema: org.apache.spark.sql.types.StructType = StructType(StructField("value", StringType) :: Nil)
def bufferSchema: StructType = StructType(StructField("values", MapType(StringType, LongType))::Nil)
def dataType: DataType = MapType(StringType, LongType)
def deterministic: Boolean = true
def initialize(buffer: MutableAggregationBuffer): Unit = {
buffer(0) = scala.collection.mutable.Map()
}
def update(buffer: MutableAggregationBuffer, input: Row) : Unit = {
val str = input.getAs[String](0)
var mp = buffer.getAs[scala.collection.mutable.Map[String, Long]](0)
var c:Long = mp.getOrElse(str, 0)
c = c + 1
mp.put(str, c)
buffer(0) = mp
}
def merge(buffer1: MutableAggregationBuffer, buffer2: Row) : Unit = {
var mp1 = buffer1.getAs[scala.collection.mutable.Map[String, Long]](0)
var mp2 = buffer2.getAs[scala.collection.mutable.Map[String, Long]](0)
mp2 foreach {
case (k ,v) => {
var c:Long = mp1.getOrElse(k, 0)
c = c + v
mp1.put(k ,c)
}
}
buffer1(0) = mp1
}
def evaluate(buffer: Row): Any = {
buffer.getAs[scala.collection.mutable.Map[String, LongType]](0)
}
}
Then I have this function on my dataframe,
val func = new DistinctValues
val agg_values = df.groupBy("col1").agg(func(col("col2")).as("DV"))
It gave such error,
func: DistinctValues = $iwC$$iwC$DistinctValues@17f48a25
org.apache.spark.SparkException: Job aborted due to stage failure: Task 1 in stage 32.0 failed 4 times, most recent failure: Lost task 1.3 in stage 32.0 (TID 884, ip-172-31-22-166.ec2.internal): java.lang.ClassCastException: scala.collection.immutable.Map$EmptyMap$ cannot be cast to scala.collection.mutable.Map
at $iwC$$iwC$DistinctValues.update(<console>:39)
at org.apache.spark.sql.execution.aggregate.ScalaUDAF.update(udaf.scala:431)
at org.apache.spark.sql.execution.aggregate.AggregationIterator$$anonfun$12.apply(AggregationIterator.scala:187)
at org.apache.spark.sql.execution.aggregate.AggregationIterator$$anonfun$12.apply(AggregationIterator.scala:180)
at org.apache.spark.sql.execution.aggregate.SortBasedAggregationIterator.processCurrentSortedGroup(SortBasedAggregationIterator.scala:116)
at org.apache.spark.sql.execution.aggregate.SortBasedAggregationIterator.next(SortBasedAggregationIterator.scala:152)
at org.apache.spark.sql.execution.aggregate.SortBasedAggregationIterator.next(SortBasedAggregationIterator.scala:29)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
at org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.write(BypassMergeSortShuffleWriter.java:149)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:73)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41)
at org.apache.spark.scheduler.Task.run(Task.scala:89)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:213)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
at java.lang.Thread.run(Thread.java:745)
It looks like in the update(buffer: MutableAggregationBuffer, input: Row)
method, the variable buffer
is a immutable.Map
, the program tired to cast it to mutable.Map
,
But I used mutable.Map
to initialize buffer
variable in initialize(buffer: MutableAggregationBuffer, input:Row)
method. Is it the same variable passed to update
method? And also buffer
is mutableAggregationBuffer
, so it should be mutable, right?
Why my mutable.Map became immutable? Does anyone know what happened?
I really need a mutable Map in this function to complete the task. I know there is a workaround to create a mutable map from the immutable map, then update it. But I really want to know why the mutable one transforms to immutable one in the program automatically, it doesn't make sense to me.
Believe it is the MapType
in your StructType
. buffer
therefore holds a Map
, which would be immutable.
You can convert it, but why don't you just leave it immutable and do this:
mp = mp + (k -> c)
to add an entry to the immutable Map
?
Working example below:
class DistinctValues extends UserDefinedAggregateFunction {
def inputSchema: org.apache.spark.sql.types.StructType = StructType(StructField("_2", IntegerType) :: Nil)
def bufferSchema: StructType = StructType(StructField("values", MapType(StringType, LongType))::Nil)
def dataType: DataType = MapType(StringType, LongType)
def deterministic: Boolean = true
def initialize(buffer: MutableAggregationBuffer): Unit = {
buffer(0) = Map()
}
def update(buffer: MutableAggregationBuffer, input: Row) : Unit = {
val str = input.getAs[String](0)
var mp = buffer.getAs[Map[String, Long]](0)
var c:Long = mp.getOrElse(str, 0)
c = c + 1
mp = mp + (str -> c)
buffer(0) = mp
}
def merge(buffer1: MutableAggregationBuffer, buffer2: Row) : Unit = {
var mp1 = buffer1.getAs[Map[String, Long]](0)
var mp2 = buffer2.getAs[Map[String, Long]](0)
mp2 foreach {
case (k ,v) => {
var c:Long = mp1.getOrElse(k, 0)
c = c + v
mp1 = mp1 + (k -> c)
}
}
buffer1(0) = mp1
}
def evaluate(buffer: Row): Any = {
buffer.getAs[Map[String, LongType]](0)
}
}
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With