Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Why is univariate Horner in Fortran faster than NumPy counterpart while bivariate Horner is not

I want to perform polynomial calculus in Python. The polynomial package in numpy is not fast enough for me. Therefore I decided to rewrite several functions in Fortran and use f2py to create shared libraries which are easily imported into Python. Currently I am benchmarking my routines for univariate and bivariate polynomial evaluation against their numpy counterparts.

In the univariate routine I use Horner's method as does numpy.polynomial.polynomial.polyval. I have observed that the factor by which the Fortran routine is faster than the numpy counterpart increases as the order of the polynomial increases.

In the bivariate routine I use Horner's method twice. First in y and then in x. Unfortunately I have observed that for increasing polynomial order, the numpy counterpart catches up and eventually surpasses my Fortran routine. As numpy.polynomial.polynomial.polyval2d uses an approach similar to mine, I consider this second observation to be strange.

I am hoping that this result stems forth from my inexperience with Fortran and f2py. Might someone have any clue why the univariate routine always appears superior, while the bivariate routine is only superior for low order polynomials?

EDIT Here is my latest updated code, benchmark script and performance plots:

polynomial.f95

subroutine polyval(p, x, pval, nx)

    implicit none

    real(8), dimension(nx), intent(in) :: p
    real(8), intent(in) :: x
    real(8), intent(out) :: pval
    integer, intent(in) :: nx
    integer :: i

    pval = 0.0d0
    do i = nx, 1, -1
        pval = pval*x + p(i)
    end do

end subroutine polyval

subroutine polyval2(p, x, y, pval, nx, ny)

    implicit none

    real(8), dimension(nx, ny), intent(in) :: p
    real(8), intent(in) :: x, y
    real(8), intent(out) :: pval
    integer, intent(in) :: nx, ny
    real(8) :: tmp
    integer :: i, j

    pval = 0.0d0
    do j = ny, 1, -1
        tmp = 0.0d0
        do i = nx, 1, -1
            tmp = tmp*x + p(i, j)
        end do
        pval = pval*y + tmp
    end do

end subroutine polyval2

subroutine polyval3(p, x, y, z, pval, nx, ny, nz)

    implicit none

    real(8), dimension(nx, ny, nz), intent(in) :: p
    real(8), intent(in) :: x, y, z
    real(8), intent(out) :: pval
    integer, intent(in) :: nx, ny, nz
    real(8) :: tmp, tmp2
    integer :: i, j, k

    pval = 0.0d0
    do k = nz, 1, -1
        tmp2 = 0.0d0
        do j = ny, 1, -1
            tmp = 0.0d0
            do i = nx, 1, -1
                tmp = tmp*x + p(i, j, k)
            end do
            tmp2 = tmp2*y + tmp
        end do
        pval = pval*z + tmp2
    end do

end subroutine polyval3

benchmark.py (use this script to produce plots)

import time
import os

import numpy as np
import matplotlib.pyplot as plt

# Compile and import Fortran module
os.system('f2py -c polynomial.f95 --opt="-O3 -ffast-math" \
--f90exec="gfortran-4.8" -m polynomial')
import polynomial

# Create random x and y value
x = np.random.rand()
y = np.random.rand()
z = np.random.rand()

# Number of repetition
repetition = 10

# Number of times to loop over a function
run = 100

# Number of data points
points = 26

# Max number of coefficients for univariate case
n_uni_min = 4
n_uni_max = 100

# Max number of coefficients for bivariate case
n_bi_min = 4
n_bi_max = 100

# Max number of coefficients for trivariate case
n_tri_min = 4
n_tri_max = 100

# Case on/off switch
case_on = [1, 1, 1]

case_1_done = 0
case_2_done = 0
case_3_done = 0

#=================#
# UNIVARIATE CASE #
#=================#

if case_on[0]:

    # Array containing the polynomial order + 1 for several univariate polynomials
    n_uni = np.array([int(x) for x in np.linspace(n_uni_min, n_uni_max, points)])

    # Initialise arrays for storing timing results
    time_uni_numpy = np.zeros(n_uni.size)
    time_uni_fortran = np.zeros(n_uni.size)

    for i in xrange(len(n_uni)):
        # Create random univariate polynomial of order n - 1
        p = np.random.rand(n_uni[i])

        # Time evaluation of polynomial using NumPy
        dt = []
        for j in xrange(repetition):
            t1 = time.time()
            for r in xrange(run): np.polynomial.polynomial.polyval(x, p)
            t2 = time.time()
            dt.append(t2 - t1)
        time_uni_numpy[i] = np.average(dt[2::])

        # Time evaluation of polynomial using Fortran
        dt = []
        for j in xrange(repetition):
            t1 = time.time()
            for r in xrange(run): polynomial.polyval(p, x)
            t2 = time.time()
            dt.append(t2 - t1)
        time_uni_fortran[i] = np.average(dt[2::])

    # Speed-up factor
    factor_uni = time_uni_numpy / time_uni_fortran

    results_uni = np.zeros([len(n_uni), 4])
    results_uni[:, 0] = n_uni
    results_uni[:, 1] = factor_uni
    results_uni[:, 2] = time_uni_numpy
    results_uni[:, 3] = time_uni_fortran
    print results_uni, '\n'

    plt.figure()
    plt.plot(n_uni, factor_uni)
    plt.title('Univariate comparison')
    plt.xlabel('# coefficients')
    plt.ylabel('Speed-up factor')
    plt.xlim(n_uni[0], n_uni[-1])
    plt.ylim(0, max(factor_uni))
    plt.grid(aa=True)

case_1_done = 1

#================#
# BIVARIATE CASE #
#================#

if case_on[1]:

    # Array containing the polynomial order + 1 for several bivariate polynomials
    n_bi = np.array([int(x) for x in np.linspace(n_bi_min, n_bi_max, points)])

    # Initialise arrays for storing timing results
    time_bi_numpy = np.zeros(n_bi.size)
    time_bi_fortran = np.zeros(n_bi.size)

    for i in xrange(len(n_bi)):
        # Create random bivariate polynomial of order n - 1 in x and in y
        p = np.random.rand(n_bi[i], n_bi[i])

        # Time evaluation of polynomial using NumPy
        dt = []
        for j in xrange(repetition):
            t1 = time.time()
            for r in xrange(run): np.polynomial.polynomial.polyval2d(x, y, p)
            t2 = time.time()
            dt.append(t2 - t1)
        time_bi_numpy[i] = np.average(dt[2::])

        # Time evaluation of polynomial using Fortran
        p = np.asfortranarray(p)
        dt = []
        for j in xrange(repetition):
            t1 = time.time()
            for r in xrange(run): polynomial.polyval2(p, x, y)
            t2 = time.time()
            dt.append(t2 - t1)
        time_bi_fortran[i] = np.average(dt[2::])

    # Speed-up factor
    factor_bi = time_bi_numpy / time_bi_fortran

    results_bi = np.zeros([len(n_bi), 4])
    results_bi[:, 0] = n_bi
    results_bi[:, 1] = factor_bi
    results_bi[:, 2] = time_bi_numpy
    results_bi[:, 3] = time_bi_fortran
    print results_bi, '\n'

    plt.figure()
    plt.plot(n_bi, factor_bi)
    plt.title('Bivariate comparison')
    plt.xlabel('# coefficients')
    plt.ylabel('Speed-up factor')
    plt.xlim(n_bi[0], n_bi[-1])
    plt.ylim(0, max(factor_bi))
    plt.grid(aa=True)

case_2_done = 1

#=================#
# TRIVARIATE CASE #
#=================#

if case_on[2]:

    # Array containing the polynomial order + 1 for several bivariate polynomials
    n_tri = np.array([int(x) for x in np.linspace(n_tri_min, n_tri_max, points)])

    # Initialise arrays for storing timing results
    time_tri_numpy = np.zeros(n_tri.size)
    time_tri_fortran = np.zeros(n_tri.size)

    for i in xrange(len(n_tri)):
        # Create random bivariate polynomial of order n - 1 in x and in y
        p = np.random.rand(n_tri[i], n_tri[i])

        # Time evaluation of polynomial using NumPy
        dt = []
        for j in xrange(repetition):
            t1 = time.time()
            for r in xrange(run): np.polynomial.polynomial.polyval3d(x, y, z, p)
            t2 = time.time()
            dt.append(t2 - t1)
        time_tri_numpy[i] = np.average(dt[2::])

        # Time evaluation of polynomial using Fortran
        p = np.asfortranarray(p)
        dt = []
        for j in xrange(repetition):
            t1 = time.time()
            for r in xrange(run): polynomial.polyval3(p, x, y, z)
            t2 = time.time()
            dt.append(t2 - t1)
        time_tri_fortran[i] = np.average(dt[2::])

    # Speed-up factor
    factor_tri = time_tri_numpy / time_tri_fortran

    results_tri = np.zeros([len(n_tri), 4])
    results_tri[:, 0] = n_tri
    results_tri[:, 1] = factor_tri
    results_tri[:, 2] = time_tri_numpy
    results_tri[:, 3] = time_tri_fortran
    print results_tri

    plt.figure()
    plt.plot(n_bi, factor_bi)
    plt.title('Trivariate comparison')
    plt.xlabel('# coefficients')
    plt.ylabel('Speed-up factor')
    plt.xlim(n_tri[0], n_tri[-1])
    plt.ylim(0, max(factor_tri))
    plt.grid(aa=True)
    print '\n'

case_3_done = 1

#==============================================================================

plt.show()

Results enter image description hereenter image description hereenter image description here

EDIT correction to the proposal of steabert

subroutine polyval(p, x, pval, nx)

    implicit none

    real*8, dimension(nx), intent(in) :: p
    real*8, intent(in) :: x
    real*8, intent(out) :: pval
    integer, intent(in) :: nx

    integer, parameter :: simd = 8
    real*8 :: tmp(simd), xpower(simd), maxpower
    integer :: i, j, k

    xpower(1) = x
    do i = 2, simd
        xpower(i) = xpower(i-1)*x
    end do
    maxpower = xpower(simd)

    tmp = 0.0d0
    do i = nx+1, simd+2, -simd
        do j = 1, simd
            tmp(j) = tmp(j)*maxpower + p(i-j)*xpower(simd-j+1)
        end do
    end do

    k = mod(nx-1, simd)
    if (k == 0) then
        pval = sum(tmp) + p(1)
    else
        pval = sum(tmp) + p(k+1)
        do i = k, 1, -1
            pval = pval*x + p(i)
        end do
    end if

end subroutine polyval

EDIT Test code to verify that the code directly above gives poor results for x > 1

import polynomial as P
import numpy.polynomial.polynomial as PP

import numpy as np

for n in xrange(2,100):
    poly1n = np.random.rand(n)
    poly1f = np.asfortranarray(poly1n)

    x = 2

    print np.linalg.norm(P.polyval(poly1f, x) - PP.polyval(x, poly1n)), '\n'
like image 518
Aeronaelius Avatar asked Sep 09 '13 22:09

Aeronaelius


1 Answers

In the bivariate case, p is a two-dimensional array. This means that C vs fortran ordering of arrays are different. By default numpy functions give C ordering, and obviously fortran routines use fortran ordering.

f2py is smart enough to deal with this, and automatically converts between C and fortran format arrays. However, this results in some overhead, which is one of the possible reasons for reduced performance. You can check if this is the cause by manually converting p to fortran type using numpy.asfortranarray outside your timing routine. Of course, for this to be meaningful, in your real use case you want to make sure that your input arrays are in fortran order.

f2py has an option -DF2PY_REPORT_ON_ARRAY_COPY which can warn you any time an array is copied.

If this is not the cause, then you need to consider more in-depth details, such as which fortran compiler you are using, and what sort of optimisations it is applying. Examples of things which could slow you down include allocation of arrays on the heap instead of the stack (with expensive calls to malloc), although I would expect such effects to become less significant for larger array.

Finally, you should consider the possibility that for bivariate fitting, for large N, that the numpy routines are already essentially at optimum efficiency. In such cases, the numpy routine may be spending most of its time running optimised C routines, and the overhead of the python code becomes negligible in comparison. In this case, you would not expect your fortran code to show any significant speedup.

like image 138
DaveP Avatar answered Sep 24 '22 14:09

DaveP