I just managed to understand the definition of the class MonadReader
class Monad m => MonadReader r m | m -> r where
...
After reading the document of Functional Dependency in Haskell, now I can understand that | m -> r
specifies that type variable r
is uniquely decided by m
. I think this requirement is reasonable based on the few typical instances of MonadReader I have seen so far (e.g. Reader
), but it seems to me that we can still define instances like Reader
even without this functional dependency clause.
My question is why we need functional dependency in the definition of MonadReader? Is this functionally necessary for defining MonadReader in a sense that MonadReader cannot be properly defined without it, or it is merely a restriction to limit the ways how MonadReader can be used so that the instances of MonadReader will all behave in a certain expected way?
It is needed to make type inference work in a way which is more convenient to the user.
For example, without the fundep this would not compile:
action :: ReaderT Int IO ()
action = do
x <- ask
liftIO $ print x
To make the above compile we would need to write
action :: ReadertT Int IO ()
action = do
x <- ask :: ReadertT Int IO Int
liftIO $ print x
This is because, without the fundep, the compiler can not infer that x
is an Int
. After all a monad ReadertT Int IO
might have multiple instances
instance MonadReader Int (ReaderT Int IO) where
ask = ReaderT (\i -> return i)
instance MonadReader Bool (ReaderT Int IO) where
ask = ReaderT (\i -> return (i != 0))
instance MonadReader String (ReaderT Int IO) where
ask = ReaderT (\i -> return (show i))
-- etc.
so the programmer must provide some annotation which forces x :: Int
, or the code is ambiguous.
This is not really an answer, but it's much too long for a comment. You are correct that it's possible to define the MonadReader
class without a fundep. In particular, the type signature of each method determines every class parameter. It would be quite possible to define a finer hierarchy.
class MonadReaderA r m where
askA :: m r
askA = readerA id
readerA :: (r -> a) -> m a
readerA f = f <$> askA
-- This effect is somewhat different in
-- character and requires special lifting.
class MonadReaderA r m => MonadReaderB r m where
localB :: (r -> r) -> m a -> m a
class MonadReaderB r m
=> MonadReader r m | m -> r
ask :: MonadReader r m => m r
ask = askA
reader
:: MonadReader r m
=> (r -> a) -> m a
reader = readerA
local
:: MonadReader r m
=> (r -> r) -> m a -> m a
local = localB
The main problem with this approach is that users have to write a bunch of instances.
I think the source of confusion is that in the definition of
class Monad m => MonadReader r m | m -> r where
{- ... -}
It is implicitly asumed that m
contains r
itself (for common instances). Let me use a lighter definiton of Reader
as
newtype Reader r a = Reader {runReader :: r -> a}
When the r
parameter is chosen you can easely define a monad instance for Reader r
. That means that in the type class definition m
should be substitute for Reader r
. So take a look at how the expresion ends up being:
instance MonadReader r (Reader r) where -- hey!! r is duplicated now
{- ... -} -- The functional dependecy becomes Reader r -> r which makes sense
But why do we need this?. Look at the definition of ask
within the MonadReader
class.
class Monad m => MonadReader r m | m -> r where
ask :: m r -- r and m are polymorphic here
{- ... -}
Without the fun-dep nothing could stop me for defining ask
in a way to return a different type as the state. Even more, I could define many instances of monad reader for my type. As an example, this would be valid definitions without func-dep
instance MonadReader Bool (Reader r) where
-- ^^^^ ^
-- | |- This is state type in the user defined newtype
-- |- this is the state type in the type class definition
ask :: Reader r Bool
ask = Reader (\_ -> True) -- the function that returns True constantly
{- ... -}
instance MonadReader String (Reader r) where
-- ^^^^^^ ^
-- | |- This is read-state type in the user defined newtype
-- |- this is the read-state type in the type class definition
ask :: Reader r String
ask = Reader (\_ -> "ThisIsBroken") -- the function that returns "ThisIsBroken" constantly
{- ... -}
So if I had a value val :: ReaderT Int IO Double
what would be the result of ask
. We'd need to specify a type signature as below
val :: Reader Int Double
val = do
r <- ask :: Reader Int String
liftIO $ putStrLn r -- Just imagine you can use liftIO
return 1.0
> val `runReader` 1
"ThisIsBroken"
1.0
val :: Reader Int Double
val = do
r <- ask :: Reader Int Bool
liftIO $ print r -- Just imagine you can use liftIO
return 1.0
> val `runReader` 1
True
1.0
Aside from being senseless, it is unconvinient to be specifiying the type over and over.
As a conclusion using the actual definition of ReaderT
. When you have something like val :: ReaderT String IO Int
the functional dependency says Such a type might have only one single instance of MonadReader
typeclass which is defined to be the one that uses String
as r
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With