A previous poster asked Function.bind vs Closure in Javascript : how to choose?
and received this answer in part, which seems to indicate bind should be faster than a closure:
Scope traversal means, when you are reaching to grab a value (variable,object) that exists in a different scope, therefore additional overhead is added (code becomes slower to execute).
Using bind, you 're calling a function with an existing scope, so that scope traversal does not take place.
Two jsperfs suggest that bind is actually much, much slower than a closure.
This was posted as a comment to the above
And, I decided to write my own jsperf
So why is bind so much slower (70+% on chromium)?
Since it is not faster and closures can serve the same purpose, should bind be avoided?
Chrome 59 update: As I predicted in the answer below bind is no longer slower with the new optimizing compiler. Here's the code with details: https://codereview.chromium.org/2916063002/
Unless you're creating an application where .bind
is the bottleneck I wouldn't bother. Readability is much more important than sheer performance in most cases. I think that using native .bind
usually provides for more readable and maintainable code - which is a big plus.
.bind
is slowerYes, .bind
is considerably slower than a closure - at least in Chrome, at least in the current way it's implemented in v8
. I've personally had to switch in Node.JS for performance issues some times (more generally, closures are kind of slow in performance intensive situations).
Why? Because the .bind
algorithm is a lot more complicated than wrapping a function with another function and using .call
or .apply
. (Fun fact, it also returns a function with toString set to [native function]).
There are two ways to look at this, from the specification point of view, and from the implementation point of view. Let's observe both.
- Let Target be the this value.
- If IsCallable(Target) is false, throw a TypeError exception.
- Let A be a new (possibly empty) internal list of all of the argument values provided after thisArg (arg1, arg2 etc), in order.
...
(21. Call the [[DefineOwnProperty]] internal method of F with arguments "arguments", PropertyDescriptor {[[Get]]: thrower, [[Set]]: thrower, [[Enumerable]]: false, [[Configurable]]: false}, and false.
(22. Return F.
Seems pretty complicated, a lot more than just a wrap.
Let's check FunctionBind
in the v8 (chrome JavaScript engine) source code:
function FunctionBind(this_arg) { // Length is 1. if (!IS_SPEC_FUNCTION(this)) { throw new $TypeError('Bind must be called on a function'); } var boundFunction = function () { // Poison .arguments and .caller, but is otherwise not detectable. "use strict"; // This function must not use any object literals (Object, Array, RegExp), // since the literals-array is being used to store the bound data. if (%_IsConstructCall()) { return %NewObjectFromBound(boundFunction); } var bindings = %BoundFunctionGetBindings(boundFunction); var argc = %_ArgumentsLength(); if (argc == 0) { return %Apply(bindings[0], bindings[1], bindings, 2, bindings.length - 2); } if (bindings.length === 2) { return %Apply(bindings[0], bindings[1], arguments, 0, argc); } var bound_argc = bindings.length - 2; var argv = new InternalArray(bound_argc + argc); for (var i = 0; i < bound_argc; i++) { argv[i] = bindings[i + 2]; } for (var j = 0; j < argc; j++) { argv[i++] = %_Arguments(j); } return %Apply(bindings[0], bindings[1], argv, 0, bound_argc + argc); }; %FunctionRemovePrototype(boundFunction); var new_length = 0; if (%_ClassOf(this) == "Function") { // Function or FunctionProxy. var old_length = this.length; // FunctionProxies might provide a non-UInt32 value. If so, ignore it. if ((typeof old_length === "number") && ((old_length >>> 0) === old_length)) { var argc = %_ArgumentsLength(); if (argc > 0) argc--; // Don't count the thisArg as parameter. new_length = old_length - argc; if (new_length < 0) new_length = 0; } } // This runtime function finds any remaining arguments on the stack, // so we don't pass the arguments object. var result = %FunctionBindArguments(boundFunction, this, this_arg, new_length); // We already have caller and arguments properties on functions, // which are non-configurable. It therefore makes no sence to // try to redefine these as defined by the spec. The spec says // that bind should make these throw a TypeError if get or set // is called and make them non-enumerable and non-configurable. // To be consistent with our normal functions we leave this as it is. // TODO(lrn): Do set these to be thrower. return result;
We can see a bunch of expensive things here in the implementation. Namely %_IsConstructCall()
. This is of course needed to abide to the specification - but it also makes it slower than a simple wrap in many cases.
On another note, calling .bind
is also slightly different, the spec notes "Function objects created using Function.prototype.bind do not have a prototype property or the [[Code]], [[FormalParameters]], and [[Scope]] internal properties"
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With