I'm working on a parallelization library for the D programming language. Now that I'm pretty happy with the basic primitives (parallel foreach, map, reduce and tasks/futures), I'm starting to think about some higher level parallel algorithms. Among the more obvious candidates for parallelization is sorting.
My first question is, are parallelized versions of sorting algorithms useful in the real world, or are they mostly academic? If they are useful, where are they useful? I personally would seldom use them in my work, simply because I usually peg all of my cores at 100% using a much coarser grained level of parallelism than a single sort() call.
Secondly, it seems like quick sort is almost embarrassingly parallel for large arrays, yet I can't get the near-linear speedups I believe I should be getting. For a quick sort, the only inherently serial part is the first partition. I tried parallelizing a quick sort by, after each partition, sorting the two subarrays in parallel. In simplified pseudocode:
// I tweaked this number a bunch. Anything smaller than this and the
// overhead is smaller than the parallelization gains.
const smallestToParallelize = 500;
void quickSort(T)(T[] array) {
if(array.length < someConstant) {
insertionSort(array);
return;
}
size_t pivotPosition = partition(array);
if(array.length >= smallestToParallelize) {
// Sort left subarray in a task pool thread.
auto myTask = taskPool.execute(quickSort(array[0..pivotPosition]));
quickSort(array[pivotPosition + 1..$]);
myTask.workWait();
} else {
// Regular serial quick sort.
quickSort(array[0..pivotPosition]);
quickSort(array[pivotPosition + 1..$]);
}
}
Even for very large arrays, where the time the first partition takes is negligible, I can only get about a 30% speedup on a dual core, compared to a purely serial version of the algorithm. I'm guessing the bottleneck is shared memory access. Any insight on how to eliminate this bottleneck or what else the bottleneck might be?
Edit: My task pool has a fixed number of threads, equal to the number of cores in the system minus 1 (since the main thread also does work). Also, the type of wait I'm using is a work wait, i.e. if the task is started but not finished, the thread calling workWait()
steals other jobs off the pool and does them until the one it's waiting on is done. If the task isn't started, it is completed in the current thread. This means that the waiting isn't inefficient. As long as there is work to be done, all threads will be kept busy.
Merge sort first divides the unsorted list into smallest possible sub-lists, compares it with the adjacent list, and merges it in a sorted order. It implements parallelism very nicely by following the divide and conquer algorithm.
Quicksort. Quicksort is one of the most efficient sorting algorithms, and this makes of it one of the most used as well. The first thing to do is to select a pivot number, this number will separate the data, on its left are the numbers smaller than it and the greater numbers on the right.
Parallel Sort uses Fork/Join framework introduced in Java 7 to assign the sorting tasks to multiple threads available in the thread pool. Fork/Join implements a work stealing algorithm where in a idle thread can steal tasks queued up in another thread.
Parallel quicksort algorithm 1We randomly choose a pivot from one of the processes and. broadcast it to every process. Each process divides its unsorted list into two lists: those smaller. than (or equal) the pivot, those greater than the pivot. Each process in the upper half of the process list sends its “low list”
Keep in mind I'm not an expert on parallel sort, and folks make research careers out of parallel sort but...
1) are they useful in the real world.
of course they are, if you need to sort something expensive (like strings or worse) and you aren't pegging all the cores.
2) Quicksort seems like it would give a linear speedup, but it isn't. The partition step is a sequential bottleneck, you will see this if you profile and it will tend to cap out at 2-3x on a quad core.
If you want to get good speedups on a smaller system you need to ensure that your per task overheads are really small and ideally you will want to ensure that you don't have too many threads running, i.e. not much more than 2 on a dual core. A thread pool probably isn't the right abstraction.
If you want to get good speedups on a larger system you'll need to look at the scan based parallel sorts, there are papers on this. bitonic sort is also quite easy parallelize as is merge sort. A parallel radix sort can also be useful, there is one in the PPL (if you aren't averse to Visual Studio 11).
I'm no expert but... here is what I'd look at:
First of all, I've heard that as a rule of thumb, algorithms that look at small bits of a problem from the start tends to work better as parallel algorithms.
Looking at your implementation, try making the parallel/serial switch go the other way: partition the array and sort in parallel until you have N segments, then go serial. If you are more or less grabbing a new thread for each parallel case, then N should be ~ your core count. OTOH if your thread pool is of fixed size and acts as a queue of short lived delegates, then I'd use N ~ 2+ times your core count (so that cores don't sit idle because one partition finished faster).
Other tweaks:
myTask.wait();
at the local level and rather have a wrapper function that waits on all the tasks.If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With