Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

When and how should I use a ThreadLocal variable?

People also ask

When should I use ThreadLocal?

ThreadLocal is useful, when you want to have some state that should not be shared amongst different threads, but it should be accessible from each thread during its whole lifetime. As an example, imagine a web application, where each request is served by a different thread.

What is ThreadLocal class how and why you should use it?

The ThreadLocal class is used to create thread local variables which can only be read and written by the same thread. For example, if two threads are accessing code having reference to same threadLocal variable then each thread will not see any modification to threadLocal variable done by other thread.

When should ThreadLocal be removed?

You should always call remove because ThreadLocal class puts values from the Thread Class defined by ThreadLocal. Values localValues; This will also cause to hold reference of Thread and associated objects. the value will be set to null and the underlying entry will still be present.

How is ThreadLocal implemented?

The implementation of ThreadLocalMap is not a WeakHashMap , but it follows the same basic contract, including holding its keys by weak reference. Essentially, use a map in this Thread to hold all our ThreadLocal objects.


One possible (and common) use is when you have some object that is not thread-safe, but you want to avoid synchronizing access to that object (I'm looking at you, SimpleDateFormat). Instead, give each thread its own instance of the object.

For example:

public class Foo
{
    // SimpleDateFormat is not thread-safe, so give one to each thread
    private static final ThreadLocal<SimpleDateFormat> formatter = new ThreadLocal<SimpleDateFormat>(){
        @Override
        protected SimpleDateFormat initialValue()
        {
            return new SimpleDateFormat("yyyyMMdd HHmm");
        }
    };

    public String formatIt(Date date)
    {
        return formatter.get().format(date);
    }
}

Documentation.


Since a ThreadLocal is a reference to data within a given Thread, you can end up with classloading leaks when using ThreadLocals in application servers using thread pools. You need to be very careful about cleaning up any ThreadLocals you get() or set() by using the ThreadLocal's remove() method.

If you do not clean up when you're done, any references it holds to classes loaded as part of a deployed webapp will remain in the permanent heap and will never get garbage collected. Redeploying/undeploying the webapp will not clean up each Thread's reference to your webapp's class(es) since the Thread is not something owned by your webapp. Each successive deployment will create a new instance of the class which will never be garbage collected.

You will end up with out of memory exceptions due to java.lang.OutOfMemoryError: PermGen space and after some googling will probably just increase -XX:MaxPermSize instead of fixing the bug.

If you do end up experiencing these problems, you can determine which thread and class is retaining these references by using Eclipse's Memory Analyzer and/or by following Frank Kieviet's guide and followup.

Update: Re-discovered Alex Vasseur's blog entry that helped me track down some ThreadLocal issues I was having.


Many frameworks use ThreadLocals to maintain some context related to the current thread. For example when the current transaction is stored in a ThreadLocal, you don't need to pass it as a parameter through every method call, in case someone down the stack needs access to it. Web applications might store information about the current request and session in a ThreadLocal, so that the application has easy access to them. With Guice you can use ThreadLocals when implementing custom scopes for the injected objects (Guice's default servlet scopes most probably use them as well).

ThreadLocals are one sort of global variables (although slightly less evil because they are restricted to one thread), so you should be careful when using them to avoid unwanted side-effects and memory leaks. Design your APIs so that the ThreadLocal values will always be automatically cleared when they are not needed anymore and that incorrect use of the API won't be possible (for example like this). ThreadLocals can be used to make the code cleaner, and in some rare cases they are the only way to make something work (my current project had two such cases; they are documented here under "Static Fields and Global Variables").


In Java, if you have a datum that can vary per-thread, your choices are to pass that datum around to every method that needs (or may need) it, or to associate the datum with the thread. Passing the datum around everywhere may be workable if all your methods already need to pass around a common "context" variable.

If that's not the case, you may not want to clutter up your method signatures with an additional parameter. In a non-threaded world, you could solve the problem with the Java equivalent of a global variable. In a threaded word, the equivalent of a global variable is a thread-local variable.


There is very good example in book Java Concurrency in Practice. Where author (Joshua Bloch) explains how Thread confinement is one of the simplest ways to achieve thread safety and ThreadLocal is more formal means of maintaining thread confinement. In the end he also explain how people can abuse it by using it as global variables.

I have copied the text from the mentioned book but code 3.10 is missing as it is not much important to understand where ThreadLocal should be use.

Thread-local variables are often used to prevent sharing in designs based on mutable Singletons or global variables. For example, a single-threaded application might maintain a global database connection that is initialized at startup to avoid having to pass a Connection to every method. Since JDBC connections may not be thread-safe, a multithreaded application that uses a global connection without additional coordination is not thread-safe either. By using a ThreadLocal to store the JDBC connection, as in ConnectionHolder in Listing 3.10, each thread will have its own connection.

ThreadLocal is widely used in implementing application frameworks. For example, J2EE containers associate a transaction context with an executing thread for the duration of an EJB call. This is easily implemented using a static Thread-Local holding the transaction context: when framework code needs to determine what transaction is currently running, it fetches the transaction context from this ThreadLocal. This is convenient in that it reduces the need to pass execution context information into every method, but couples any code that uses this mechanism to the framework.

It is easy to abuse ThreadLocal by treating its thread confinement property as a license to use global variables or as a means of creating “hidden” method arguments. Like global variables, thread-local variables can detract from reusability and introduce hidden couplings among classes, and should therefore be used with care.


Essentially, when you need a variable's value to depend on the current thread and it isn't convenient for you to attach the value to the thread in some other way (for example, subclassing thread).

A typical case is where some other framework has created the thread that your code is running in, e.g. a servlet container, or where it just makes more sense to use ThreadLocal because your variable is then "in its logical place" (rather than a variable hanging from a Thread subclass or in some other hash map).

On my web site, I have some further discussion and examples of when to use ThreadLocal that may also be of interest.

Some people advocate using ThreadLocal as a way to attach a "thread ID" to each thread in certain concurrent algorithms where you need a thread number (see e.g. Herlihy & Shavit). In such cases, check that you're really getting a benefit!