Q-Learning technique is an Off Policy technique and uses the greedy approach to learn the Q-value. SARSA technique, on the other hand, is an On Policy and uses the action performed by the current policy to learn the Q-value.
In practice, if you want to fast in a fast-iterating environment, QL should be your choice. However, if mistakes are costly (unexpected minimal failure — robots), then SARSA is the better option. If your state space is too large, try exploring the deep q network.
... SARSA is an iterative dynamic programming algorithm to find the optimal solution based on a limited environment. It is worth mentioning that SARSA has a faster convergence rate than Q-learning and is less computationally complex than other RL algorithms [44] .
State–action–reward–state–action (SARSA) is an algorithm for learning a Markov decision process policy, used in the reinforcement learning area of machine learning.
When I was learning this part, I found it very confusing too, so I put together the two pseudo-codes from R.Sutton and A.G.Barto hoping to make the difference clearer.
Blue boxes highlight the part where the two algorithms actually differ. Numbers highlight the more detailed difference to be explained later.
TL;NR:
| | SARSA | Q-learning |
|:-----------:|:-----:|:----------:|
| Choosing A' | π | π |
| Updating Q | π | μ |
where π is a ε-greedy policy (e.g. ε > 0 with exploration), and μ is a greedy policy (e.g. ε == 0, NO exploration).
Given that Q-learning is using different policies for choosing next action A' and updating Q. In other words, it is trying to evaluate π while following another policy μ, so it's an off-policy algorithm.
In contrast, SARSA uses π all the time, hence it is an on-policy algorithm.
More detailed explanation:
The most important difference between the two is how Q is updated after each action. SARSA uses the Q' following a ε-greedy policy exactly, as A' is drawn from it. In contrast, Q-learning uses the maximum Q' over all possible actions for the next step. This makes it look like following a greedy policy with ε=0, i.e. NO exploration in this part.
However, when actually taking an action, Q-learning still uses the action taken from a ε-greedy policy. This is why "Choose A ..." is inside the repeat loop.
Following the loop logic in Q-learning, A' is still from the ε-greedy policy.
Yes, this is the only difference. On-policy SARSA learns action values relative to the policy it follows, while off-policy Q-Learning does it relative to the greedy policy. Under some common conditions, they both converge to the real value function, but at different rates. Q-Learning tends to converge a little slower, but has the capabilitiy to continue learning while changing policies. Also, Q-Learning is not guaranteed to converge when combined with linear approximation.
In practical terms, under the ε-greedy policy, Q-Learning computes the difference between Q(s,a) and the maximum action value, while SARSA computes the difference between Q(s,a) and the weighted sum of the average action value and the maximum:
Q-Learning: Q(st+1,at+1) = maxaQ(st+1,a)
SARSA: Q(st+1,at+1) = ε·meanaQ(st+1,a) + (1-ε)·maxaQ(st+1,a)
As is already described in most other answers, the difference between the two updates mathematically is indeed that, when updating the Q-value for a state-action pair (St, At):
As mentioned in other answers, the difference described above means, using technical terminology, that Sarsa is an on-policy learning algorithm, and Q-learning is an off-policy learning algorithm.
In the limit (given an infinite amount of time to generate experience and learn), and under some additional assumptions, this means that Sarsa and Q-learning converge to different solutions / "optimal" policies:
An algorithm like Sarsa is typically preferable in situations where we care about the agent's performance during the process of learning / generating experience. Consider, for example, that the agent is an expensive robot that will break if it falls down a cliff. We'd rather not have it fall down too often during the learning process, because it is expensive. Therefore, we care about its performance during the learning process. However, we also know that we need it to act randomly sometimes (e.g. epsilon-greedy). This means that it is highly dangerous for the robot to be walking alongside the cliff, because it may decide to act randomly (with probability epsilon) and fall down. So, we'd prefer it to quickly learn that it's dangerous to be close to the cliff; even if a greedy policy would be able to walk right alongside it without falling, we know that we're following an epsilon-greedy policy with randomness, and we care about optimizing our performance given that we know that we'll be stupid sometimes. This is a situation where Sarsa would be preferable.
An algorithm like Q-learning would be preferable in situations where we do not care about the agent's performance during the training process, but we just want it to learn an optimal greedy policy that we'll switch to eventually. Consider, for example, that we play a few practice games (where we don't mind losing due to randomness sometimes), and afterwards play an important tournament (where we'll stop learning and switch over from epsilon-greedy to the greedy policy). This is where Q-learning would be better.
There's an index mistake in your formula for Q-Learning. Page 148 of Sutton and Barto's.
Q(st,at) <-- Q(st,at) + alpha * [r(t+1) + gamma * max Q(st+1,a) - Q(st,at) ]
The typo is in the argument of the max:
the indexes are st+1 and a, while in your question they are st+1 and at+1 (these are correct for SARSA).
Hope this helps a bit.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With