Suppose I have a Tensorflow tensor. How do I get the dimensions (shape) of the tensor as integer values? I know there are two methods, tensor.get_shape()
and tf.shape(tensor)
, but I can't get the shape values as integer int32
values.
For example, below I've created a 2-D tensor, and I need to get the number of rows and columns as int32
so that I can call reshape()
to create a tensor of shape (num_rows * num_cols, 1)
. However, the method tensor.get_shape()
returns values as Dimension
type, not int32
.
import tensorflow as tf import numpy as np sess = tf.Session() tensor = tf.convert_to_tensor(np.array([[1001,1002,1003],[3,4,5]]), dtype=tf.float32) sess.run(tensor) # array([[ 1001., 1002., 1003.], # [ 3., 4., 5.]], dtype=float32) tensor_shape = tensor.get_shape() tensor_shape # TensorShape([Dimension(2), Dimension(3)]) print tensor_shape # (2, 3) num_rows = tensor_shape[0] # ??? num_cols = tensor_shape[1] # ??? tensor2 = tf.reshape(tensor, (num_rows*num_cols, 1)) # Traceback (most recent call last): # File "<stdin>", line 1, in <module> # File "/usr/local/lib/python2.7/site-packages/tensorflow/python/ops/gen_array_ops.py", line 1750, in reshape # name=name) # File "/usr/local/lib/python2.7/site-packages/tensorflow/python/framework/op_def_library.py", line 454, in apply_op # as_ref=input_arg.is_ref) # File "/usr/local/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 621, in convert_to_tensor # ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref) # File "/usr/local/lib/python2.7/site-packages/tensorflow/python/framework/constant_op.py", line 180, in _constant_tensor_conversion_function # return constant(v, dtype=dtype, name=name) # File "/usr/local/lib/python2.7/site-packages/tensorflow/python/framework/constant_op.py", line 163, in constant # tensor_util.make_tensor_proto(value, dtype=dtype, shape=shape)) # File "/usr/local/lib/python2.7/site-packages/tensorflow/python/framework/tensor_util.py", line 353, in make_tensor_proto # _AssertCompatible(values, dtype) # File "/usr/local/lib/python2.7/site-packages/tensorflow/python/framework/tensor_util.py", line 290, in _AssertCompatible # (dtype.name, repr(mismatch), type(mismatch).__name__)) # TypeError: Expected int32, got Dimension(6) of type 'Dimension' instead.
The easiest[A] way to evaluate the actual value of a Tensor object is to pass it to the Session. run() method, or call Tensor. eval() when you have a default session (i.e. in a with tf. Session(): block, or see below).
To get the shape as a list of ints, do tensor.get_shape().as_list()
.
To complete your tf.shape()
call, try tensor2 = tf.reshape(tensor, tf.TensorShape([num_rows*num_cols, 1]))
. Or you can directly do tensor2 = tf.reshape(tensor, tf.TensorShape([-1, 1]))
where its first dimension can be inferred.
Another way to solve this is like this:
tensor_shape[0].value
This will return the int value of the Dimension object.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With