Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

What are Haskell's strictness points?

We all know (or should know) that Haskell is lazy by default. Nothing is evaluated until it must be evaluated. So when must something be evaluated? There are points where Haskell must be strict. I call these "strictness points", although this particular term isn't as widespread as I had thought. According to me:

Reduction (or evaluation) in Haskell only occurs at strictness points.

So the question is: what, precisely, are Haskell's strictness points? My intuition says that main, seq / bang patterns, pattern matching, and any IO action performed via main are the primary strictness points, but I don't really know why I know that.

(Also, if they're not called "strictness points", what are they called?)

I imagine a good answer will include some discussion about WHNF and so on. I also imagine it might touch on lambda calculus.


Edit: additional thoughts about this question.

As I've reflected on this question, I think it would be clearer to add something to the definition of a strictness point. Strictness points can have varying contexts and varying depth (or strictness). Falling back to my definition that "reduction in Haskell only occurs at strictness points", let us add to that definition this clause: "a strictness point is only triggered when its surrounding context is evaluated or reduced."

So, let me try to get you started on the kind of answer I want. main is a strictness point. It is specially designated as the primary strictness point of its context: the program. When the program (main's context) is evaluated, the strictness point of main is activated. Main's depth is maximal: it must be fully evaluated. Main is usually composed of IO actions, which are also strictness points, whose context is main.

Now you try: discuss seq and pattern matching in these terms. Explain the nuances of function application: how is it strict? How is it not? What about deepseq? let and case statements? unsafePerformIO? Debug.Trace? Top-level definitions? Strict data types? Bang patterns? Etc. How many of these items can be described in terms of just seq or pattern matching?

like image 220
Dan Burton Avatar asked Sep 20 '11 19:09

Dan Burton


People also ask

What is strictness in Haskell?

Strictness analysis Optimising compilers like GHC try to reduce the cost of laziness using strictness analysis, which attempts to determine which function arguments are always evaluated by the function, and hence can be evaluated by the caller instead.

What is SEQ in Haskell?

From HaskellWiki. The seq function is the most basic method of introducing strictness to a Haskell program. seq :: a -> b -> b takes two arguments of any type, and returns the second. However, it also has the important property that it is magically strict in its first argument.


2 Answers

A good place to start is by understanding this paper: A Natural Semantics for Lazy Evalution (Launchbury). That will tell you when expressions are evaluated for a small language similar to GHC's Core. Then the remaining question is how to map full Haskell to Core, and most of that translation is given by the Haskell report itself. In GHC we call this process "desugaring", because it removes syntactic sugar.

Well, that's not the whole story, because GHC includes a whole raft of optimisations between desugaring and code generation, and many of these transformations will rearrange the Core so that things get evaluated at different times (strictness analysis in particular will cause things to be evaluated earlier). So to really understand how your program will be evaluated, you need to look at the Core produced by GHC.

Perhaps this answer seems a bit abstract to you (I didn't specifically mention bang patterns or seq), but you asked for something precise, and this is about the best we can do.

like image 155
Simon Marlow Avatar answered Sep 30 '22 23:09

Simon Marlow


I would probably recast this question as, Under what circumstances will Haskell evaluate an expression? (Perhaps tack on a "to weak head normal form.")

To a first approximation, we can specify this as follows:

  • Executing IO actions will evaluate any expressions that they “need.” (So you need to know if the IO action is executed, e.g. it's name is main, or it is called from main AND you need to know what the action needs.)
  • An expression that is being evaluated (hey, that's a recursive definition!) will evaluate any expressions it needs.

From your intuitive list, main and IO actions fall into the first category, and seq and pattern matching fall into the second category. But I think that the first category is more in line with your idea of "strictness point", because that is in fact how we cause evaluation in Haskell to become observable effects for users.

Giving all of the details specifically is a large task, since Haskell is a large language. It's also quite subtle, because Concurrent Haskell may evaluate things speculatively, even though we end up not using the result in the end: this is a third breed of things that cause evaluation. The second category is quite well studied: you want to look at the strictness of the functions involved. The first category too can be thought to be a sort of "strictness", though this is a little dodgy because evaluate x and seq x $ return () are actually different things! You can treat it properly if you give some sort of semantics to the IO monad (explicitly passing a RealWorld# token works for simple cases), but I don't know if there's a name for this sort of stratified strictness analysis in general.

like image 39
Edward Z. Yang Avatar answered Sep 30 '22 22:09

Edward Z. Yang