Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Using numpy to build an array of all combinations of two arrays

People also ask

How do I put two arrays together in NumPy?

Joining means putting contents of two or more arrays in a single array. In SQL we join tables based on a key, whereas in NumPy we join arrays by axes. We pass a sequence of arrays that we want to join to the concatenate() function, along with the axis. If axis is not explicitly passed, it is taken as 0.

Can you combine NumPy arrays?

We can perform the concatenation operation using the concatenate() function. With this function, arrays are concatenated either row-wise or column-wise, given that they have equal rows or columns respectively. Column-wise concatenation can be done by equating axis to 1 as an argument in the function.

Can you have a NumPy array of NumPy arrays?

We pass a sequence of elements enclosed in a pair of square brackets to the numpy. array() function, and it returns an array containing the exact sequence of elements. The array of arrays, or known as the multidimensional array, can be created by passing arrays in the numpy. array() function.


In newer version of numpy (>1.8.x), numpy.meshgrid() provides a much faster implementation:

@pv's solution

In [113]:

%timeit cartesian(([1, 2, 3], [4, 5], [6, 7]))
10000 loops, best of 3: 135 µs per loop
In [114]:

cartesian(([1, 2, 3], [4, 5], [6, 7]))

Out[114]:
array([[1, 4, 6],
       [1, 4, 7],
       [1, 5, 6],
       [1, 5, 7],
       [2, 4, 6],
       [2, 4, 7],
       [2, 5, 6],
       [2, 5, 7],
       [3, 4, 6],
       [3, 4, 7],
       [3, 5, 6],
       [3, 5, 7]])

numpy.meshgrid() use to be 2D only, now it is capable of ND. In this case, 3D:

In [115]:

%timeit np.array(np.meshgrid([1, 2, 3], [4, 5], [6, 7])).T.reshape(-1,3)
10000 loops, best of 3: 74.1 µs per loop
In [116]:

np.array(np.meshgrid([1, 2, 3], [4, 5], [6, 7])).T.reshape(-1,3)

Out[116]:
array([[1, 4, 6],
       [1, 5, 6],
       [2, 4, 6],
       [2, 5, 6],
       [3, 4, 6],
       [3, 5, 6],
       [1, 4, 7],
       [1, 5, 7],
       [2, 4, 7],
       [2, 5, 7],
       [3, 4, 7],
       [3, 5, 7]])

Note that the order of the final resultant is slightly different.


Here's a pure-numpy implementation. It's about 5× faster than using itertools.

Python 3:

import numpy as np

def cartesian(arrays, out=None):
    """
    Generate a cartesian product of input arrays.

    Parameters
    ----------
    arrays : list of array-like
        1-D arrays to form the cartesian product of.
    out : ndarray
        Array to place the cartesian product in.

    Returns
    -------
    out : ndarray
        2-D array of shape (M, len(arrays)) containing cartesian products
        formed of input arrays.

    Examples
    --------
    >>> cartesian(([1, 2, 3], [4, 5], [6, 7]))
    array([[1, 4, 6],
           [1, 4, 7],
           [1, 5, 6],
           [1, 5, 7],
           [2, 4, 6],
           [2, 4, 7],
           [2, 5, 6],
           [2, 5, 7],
           [3, 4, 6],
           [3, 4, 7],
           [3, 5, 6],
           [3, 5, 7]])

    """

    arrays = [np.asarray(x) for x in arrays]
    dtype = arrays[0].dtype

    n = np.prod([x.size for x in arrays])
    if out is None:
        out = np.zeros([n, len(arrays)], dtype=dtype)

    #m = n / arrays[0].size
    m = int(n / arrays[0].size) 
    out[:,0] = np.repeat(arrays[0], m)
    if arrays[1:]:
        cartesian(arrays[1:], out=out[0:m, 1:])
        for j in range(1, arrays[0].size):
        #for j in xrange(1, arrays[0].size):
            out[j*m:(j+1)*m, 1:] = out[0:m, 1:]
    return out

Python 2:


import numpy as np

def cartesian(arrays, out=None):
    arrays = [np.asarray(x) for x in arrays]
    dtype = arrays[0].dtype

    n = np.prod([x.size for x in arrays])
    if out is None:
        out = np.zeros([n, len(arrays)], dtype=dtype)

    m = n / arrays[0].size
    out[:,0] = np.repeat(arrays[0], m)
    if arrays[1:]:
        cartesian(arrays[1:], out=out[0:m, 1:])
        for j in xrange(1, arrays[0].size):
            out[j*m:(j+1)*m, 1:] = out[0:m, 1:]
    return out

itertools.combinations is in general the fastest way to get combinations from a Python container (if you do in fact want combinations, i.e., arrangements WITHOUT repetitions and independent of order; that's not what your code appears to be doing, but I can't tell whether that's because your code is buggy or because you're using the wrong terminology).

If you want something different than combinations perhaps other iterators in itertools, product or permutations, might serve you better. For example, it looks like your code is roughly the same as:

for val in itertools.product(np.arange(0, 1, 0.1), repeat=6):
    print F(val)

All of these iterators yield tuples, not lists or numpy arrays, so if your F is picky about getting specifically a numpy array you'll have to accept the extra overhead of constructing or clearing and re-filling one at each step.


you can use np.array(itertools.product(a, b))