First off, I am using python[2.7.2], numpy[1.6.2rc1], cython[0.16], gcc[MinGW] compiler, on a windows xp machine.
I needed a 3D connected components algorithm to process some 3D binary data (i.e. 1s and 0s) stored in numpy arrays. Unfortunately, I could not find any existing code so I adapted the code found here to work with 3D arrays. Everything works great, however speed is desirable for processing huge data sets. As a result I stumbled upon cython and decided to give it a try.
So far cython has improved the speed: Cython: 0.339 s Python: 0.635 s
Using cProfile, my time consuming line in the pure python version is:
new_region = min(filter(lambda i: i > 0, array_region[xMin:xMax,yMin:yMax,zMin:zMax].ravel()))
The Question: What is the correct way to "cythonize" the lines:
new_region = min(filter(lambda i: i > 0, array_region[xMin:xMax,yMin:yMax,zMin:zMax].ravel()))
for x,y,z in zip(ind[0],ind[1],ind[2]):
Any help would be appreciated and hopefully this work will help others.
Pure python version [*.py]:
import numpy as np
def find_regions_3D(Array):
x_dim=np.size(Array,0)
y_dim=np.size(Array,1)
z_dim=np.size(Array,2)
regions = {}
array_region = np.zeros((x_dim,y_dim,z_dim),)
equivalences = {}
n_regions = 0
#first pass. find regions.
ind=np.where(Array==1)
for x,y,z in zip(ind[0],ind[1],ind[2]):
# get the region number from all surrounding cells including diagnols (27) or create new region
xMin=max(x-1,0)
xMax=min(x+1,x_dim-1)
yMin=max(y-1,0)
yMax=min(y+1,y_dim-1)
zMin=max(z-1,0)
zMax=min(z+1,z_dim-1)
max_region=array_region[xMin:xMax+1,yMin:yMax+1,zMin:zMax+1].max()
if max_region > 0:
#a neighbour already has a region, new region is the smallest > 0
new_region = min(filter(lambda i: i > 0, array_region[xMin:xMax+1,yMin:yMax+1,zMin:zMax+1].ravel()))
#update equivalences
if max_region > new_region:
if max_region in equivalences:
equivalences[max_region].add(new_region)
else:
equivalences[max_region] = set((new_region, ))
else:
n_regions += 1
new_region = n_regions
array_region[x,y,z] = new_region
#Scan Array again, assigning all equivalent regions the same region value.
for x,y,z in zip(ind[0],ind[1],ind[2]):
r = array_region[x,y,z]
while r in equivalences:
r= min(equivalences[r])
array_region[x,y,z]=r
#return list(regions.itervalues())
return array_region
Pure python speedups:
#Original line:
new_region = min(filter(lambda i: i > 0, array_region[xMin:xMax+1,yMin:yMax+1,zMin:zMax+1].ravel()))
#ver A:
new_region = array_region[xMin:xMax+1,yMin:yMax+1,zMin:zMax+1]
min(new_region[new_region>0])
#ver B:
new_region = min( i for i in array_region[xMin:xMax,yMin:yMax,zMin:zMax].ravel() if i>0)
#ver C:
sub=array_region[xMin:xMax,yMin:yMax,zMin:zMax]
nlist=np.where(sub>0)
minList=[]
for x,y,z in zip(nlist[0],nlist[1],nlist[2]):
minList.append(sub[x,y,z])
new_region=min(minList)
Time results:
O: 0.0220445
A: 0.0002161
B: 0.0173195
C: 0.0002560
Cython version [*.pyx]:
import numpy as np
cimport numpy as np
DTYPE = np.int
ctypedef np.int_t DTYPE_t
cdef inline int int_max(int a, int b): return a if a >= b else b
cdef inline int int_min(int a, int b): return a if a <= b else b
def find_regions_3D(np.ndarray Array not None):
cdef int x_dim=np.size(Array,0)
cdef int y_dim=np.size(Array,1)
cdef int z_dim=np.size(Array,2)
regions = {}
cdef np.ndarray array_region = np.zeros((x_dim,y_dim,z_dim),dtype=DTYPE)
equivalences = {}
cdef int n_regions = 0
#first pass. find regions.
ind=np.where(Array==1)
cdef int xMin, xMax, yMin, yMax, zMin, zMax, max_region, new_region, x, y, z
for x,y,z in zip(ind[0],ind[1],ind[2]):
# get the region number from all surrounding cells including diagnols (27) or create new region
xMin=int_max(x-1,0)
xMax=int_min(x+1,x_dim-1)+1
yMin=int_max(y-1,0)
yMax=int_min(y+1,y_dim-1)+1
zMin=int_max(z-1,0)
zMax=int_min(z+1,z_dim-1)+1
max_region=array_region[xMin:xMax,yMin:yMax,zMin:zMax].max()
if max_region > 0:
#a neighbour already has a region, new region is the smallest > 0
new_region = min(filter(lambda i: i > 0, array_region[xMin:xMax,yMin:yMax,zMin:zMax].ravel()))
#update equivalences
if max_region > new_region:
if max_region in equivalences:
equivalences[max_region].add(new_region)
else:
equivalences[max_region] = set((new_region, ))
else:
n_regions += 1
new_region = n_regions
array_region[x,y,z] = new_region
#Scan Array again, assigning all equivalent regions the same region value.
cdef int r
for x,y,z in zip(ind[0],ind[1],ind[2]):
r = array_region[x,y,z]
while r in equivalences:
r= min(equivalences[r])
array_region[x,y,z]=r
#return list(regions.itervalues())
return array_region
Cython speedups:
Using:
cdef np.ndarray region = np.zeros((3,3,3),dtype=DTYPE)
...
region=array_region[xMin:xMax,yMin:yMax,zMin:zMax]
new_region=np.min(region[region>0])
Time: 0.170, original: 0.339 s
After considering the many useful comments and answers provided, my current algorithms are running at:
Cython: 0.0219
Python: 0.4309
Cython is providing a 20x increase in speed over the pure python.
Current Cython Code:
import numpy as np
import cython
cimport numpy as np
cimport cython
from libcpp.map cimport map
DTYPE = np.int
ctypedef np.int_t DTYPE_t
cdef inline int int_max(int a, int b): return a if a >= b else b
cdef inline int int_min(int a, int b): return a if a <= b else b
@cython.boundscheck(False)
def find_regions_3D(np.ndarray[DTYPE_t,ndim=3] Array not None):
cdef unsigned int x_dim=np.size(Array,0),y_dim=np.size(Array,1),z_dim=np.size(Array,2)
regions = {}
cdef np.ndarray[DTYPE_t,ndim=3] array_region = np.zeros((x_dim,y_dim,z_dim),dtype=DTYPE)
cdef np.ndarray region = np.zeros((3,3,3),dtype=DTYPE)
cdef map[int,int] equivalences
cdef unsigned int n_regions = 0
#first pass. find regions.
ind=np.where(Array==1)
cdef np.ndarray[DTYPE_t,ndim=1] ind_x = ind[0], ind_y = ind[1], ind_z = ind[2]
cells=range(len(ind_x))
cdef unsigned int xMin, xMax, yMin, yMax, zMin, zMax, max_region, new_region, x, y, z, i, xi, yi, zi, val
for i in cells:
x=ind_x[i]
y=ind_y[i]
z=ind_z[i]
# get the region number from all surrounding cells including diagnols (27) or create new region
xMin=int_max(x-1,0)
xMax=int_min(x+1,x_dim-1)+1
yMin=int_max(y-1,0)
yMax=int_min(y+1,y_dim-1)+1
zMin=int_max(z-1,0)
zMax=int_min(z+1,z_dim-1)+1
max_region = 0
new_region = 2000000000 # huge number
for xi in range(xMin, xMax):
for yi in range(yMin, yMax):
for zi in range(zMin, zMax):
val = array_region[xi,yi,zi]
if val > max_region: # val is the new maximum
max_region = val
if 0 < val < new_region: # val is the new minimum
new_region = val
if max_region > 0:
if max_region > new_region:
if equivalences.count(max_region) == 0 or new_region < equivalences[max_region]:
equivalences[max_region] = new_region
else:
n_regions += 1
new_region = n_regions
array_region[x,y,z] = new_region
#Scan Array again, assigning all equivalent regions the same region value.
cdef int r
for i in cells:
x=ind_x[i]
y=ind_y[i]
z=ind_z[i]
r = array_region[x,y,z]
while equivalences.count(r) > 0:
r= equivalences[r]
array_region[x,y,z]=r
return array_region
Setup file [setup.py]
from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext
import numpy
setup(
cmdclass = {'build_ext': build_ext},
ext_modules = [Extension("ConnectComp", ["ConnectedComponents.pyx"],
include_dirs =[numpy.get_include()],
language="c++",
)]
)
Build command:
python setup.py build_ext --inplace
As @gotgenes points out, you should definitely be using cython -a <file>
, and trying to reduce the amount of yellow you see. Yellow corresponds to worse and worse generated C.
Things I found that reduced the amount of yellow:
This looks like a situation where there will never be any out of bounds array access, as long as the input Array
has 3 dimensions, so one can turn off bounds checking:
cimport cython
@cython.boundscheck(False)
def find_regions_3d(...):
Give the compiler more information for efficient indexing, i.e. whenever you cdef
an ndarray
give as much information as you can:
def find_regions_3D(np.ndarray[DTYPE_t,ndim=3] Array not None):
[...]
cdef np.ndarray[DTYPE_t,ndim=3] array_region = ...
[etc.]
Give the compiler more information about positive/negative-ness. I.e. if you know a certain variable is always going to be positive, cdef
it as unsigned int
rather than int
, as this means that Cython can eliminate any negative-indexing checks.
Unpack the ind
tuple immediately, i.e.
ind = np.where(Array==1)
cdef np.ndarray[DTYPE_t,ndim=1] ind_x = ind[0], ind_y = ind[1], ind_z = ind[2]
Avoid using the for x,y,z in zip(..[0],..[1],..[2])
construct. In both cases, replace it with
cdef int i
for i in range(len(ind_x)):
x = ind_x[i]
y = ind_y[i]
z = ind_z[i]
Avoid doing the fancy indexing/slicing. And especially avoid doing it twice! And avoid using filter
! I.e. replace
max_region=array_region[xMin:xMax,yMin:yMax,zMin:zMax].max()
if max_region > 0:
new_region = min(filter(lambda i: i > 0, array_region[xMin:xMax,yMin:yMax,zMin:zMax].ravel()))
if max_region > new_region:
if max_region in equivalences:
equivalences[max_region].add(new_region)
else:
equivalences[max_region] = set((new_region, ))
with the more verbose
max_region = 0
new_region = 2000000000 # "infinity"
for xi in range(xMin, xMax):
for yi in range(yMin, yMax):
for zi in range(zMin, zMax):
val = array_region[xi,yi,zi]
if val > max_region: # val is the new maximum
max_region = val
if 0 < val < new_region: # val is the new minimum
new_region = val
if max_region > 0:
if max_region > new_region:
if max_region in equivalences:
equivalences[max_region].add(new_region)
else:
equivalences[max_region] = set((new_region, ))
else:
n_regions += 1
new_region = n_regions
This doesn't look so nice, but the triple loop compiles down to about 10 or so lines of C, while the compiled version of the original is hundreds of lines long and has a lot of Python object manipulation.
(Obviously you must cdef
all the variables you use, especially xi
, yi
, zi
and val
in this code.)
You don't need to store all the equivalences, since the only thing you do with the set is find the minimum element. So if you instead have equivalences
mapping int
to int
, you can replace
if max_region in equivalences:
equivalences[max_region].add(new_region)
else:
equivalences[max_region] = set((new_region, ))
[...]
while r in equivalences:
r = min(equivalences[r])
with
if max_region not in equivalences or new_region < equivalences[max_region]:
equivalences[max_region] = new_region
[...]
while r in equivalences:
r = equivalences[r]
The last thing to do after all that would be to not use any Python objects at all, specifically, don't use a dictionary for equivalences
. This is now easy, since it is mapping int
to int
, so one could use from libcpp.map cimport map
and then cdef map[int,int] equivalences
, and replace .. not in equivalences
with equivalences.count(..) == 0
and .. in equivalences
with equivalences.count(..) > 0
. (Note that it will then require a C++ compiler.)
(copied from the above comment for others ease of reading)
I believe scipy's ndimage.label does what you want (I did not test it against your code but it should be quite efficient). Note that you have to import it explicitely:
from scipy import ndimage
ndimage.label(your_data, connectivity_struct)
then later you can apply other built-in functions (like finding the bounding rectangle, centre-of-mass, etc)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With