The typeid operator returns an lvalue of type const std::type_info that represents the type of expression expr. You must include the standard template library header <typeinfo> to use the typeid operator.
std::type_info The class type_info holds implementation-specific information about a type, including the name of the type and means to compare two types for equality or collating order.
To use the typeid operator in a program, one needs to include the library header <typeinfo>. It returns the lvalue of type const type_info to represent the type of value. Expression of typeid is an lvalue expression (lvalue has the address which is accessible by the program.
The c++filt utility is a filter that copies characters from file names or standard input to standard output, replacing all mangled names with their corresponding demangled names.
Given the attention this question / answer receives, and the valuable feedback from GManNickG, I have cleaned up the code a little bit. Two versions are given: one with C++11 features and another one with only C++98 features.
In file type.hpp
#ifndef TYPE_HPP
#define TYPE_HPP
#include <string>
#include <typeinfo>
std::string demangle(const char* name);
template <class T>
std::string type(const T& t) {
return demangle(typeid(t).name());
}
#endif
In file type.cpp (requires C++11)
#include "type.hpp"
#ifdef __GNUG__
#include <cstdlib>
#include <memory>
#include <cxxabi.h>
std::string demangle(const char* name) {
int status = -4; // some arbitrary value to eliminate the compiler warning
// enable c++11 by passing the flag -std=c++11 to g++
std::unique_ptr<char, void(*)(void*)> res {
abi::__cxa_demangle(name, NULL, NULL, &status),
std::free
};
return (status==0) ? res.get() : name ;
}
#else
// does nothing if not g++
std::string demangle(const char* name) {
return name;
}
#endif
Usage:
#include <iostream>
#include "type.hpp"
struct Base { virtual ~Base() {} };
struct Derived : public Base { };
int main() {
Base* ptr_base = new Derived(); // Please use smart pointers in YOUR code!
std::cout << "Type of ptr_base: " << type(ptr_base) << std::endl;
std::cout << "Type of pointee: " << type(*ptr_base) << std::endl;
delete ptr_base;
}
It prints:
Type of ptr_base: Base*
Type of pointee: Derived
Tested with g++ 4.7.2, g++ 4.9.0 20140302 (experimental), clang++ 3.4 (trunk 184647), clang 3.5 (trunk 202594) on Linux 64 bit and g++ 4.7.2 (Mingw32, Win32 XP SP2).
If you cannot use C++11 features, here is how it can be done in C++98, the file type.cpp is now:
#include "type.hpp"
#ifdef __GNUG__
#include <cstdlib>
#include <memory>
#include <cxxabi.h>
struct handle {
char* p;
handle(char* ptr) : p(ptr) { }
~handle() { std::free(p); }
};
std::string demangle(const char* name) {
int status = -4; // some arbitrary value to eliminate the compiler warning
handle result( abi::__cxa_demangle(name, NULL, NULL, &status) );
return (status==0) ? result.p : name ;
}
#else
// does nothing if not g++
std::string demangle(const char* name) {
return name;
}
#endif
(Update from Sep 8, 2013)
The accepted answer (as of Sep 7, 2013), when the call to abi::__cxa_demangle()
is successful, returns a pointer to a local, stack allocated array... ouch!
Also note that if you provide a buffer, abi::__cxa_demangle()
assumes it to be allocated on the heap. Allocating the buffer on the stack is a bug (from the gnu doc): "If output_buffer
is not long enough, it is expanded using realloc
." Calling realloc()
on a pointer to the stack... ouch! (See also Igor Skochinsky's kind comment.)
You can easily verify both of these bugs: just reduce the buffer size in the accepted answer (as of Sep 7, 2013) from 1024 to something smaller, for example 16, and give it something with a name not longer than 15 (so realloc()
is not called). Still, depending on your system and the compiler optimizations, the output will be: garbage / nothing / program crash.
To verify the second bug: set the buffer size to 1 and call it with something whose name is longer than 1 character. When you run it, the program almost assuredly crashes as it attempts to call realloc()
with a pointer to the stack.
(The old answer from Dec 27, 2010)
Important changes made to KeithB's code: the buffer has to be either allocated by malloc or specified as NULL. Do NOT allocate it on the stack.
It's wise to check that status as well.
I failed to find HAVE_CXA_DEMANGLE
. I check __GNUG__
although that does not guarantee that the code will even compile. Anyone has a better idea?
#include <cxxabi.h>
const string demangle(const char* name) {
int status = -4;
char* res = abi::__cxa_demangle(name, NULL, NULL, &status);
const char* const demangled_name = (status==0)?res:name;
string ret_val(demangled_name);
free(res);
return ret_val;
}
Boost core contains a demangler. Checkout core/demangle.hpp:
#include <boost/core/demangle.hpp>
#include <typeinfo>
#include <iostream>
template<class T> struct X
{
};
int main()
{
char const * name = typeid( X<int> ).name();
std::cout << name << std::endl; // prints 1XIiE
std::cout << boost::core::demangle( name ) << std::endl; // prints X<int>
}
It's basically just a wrapper for abi::__cxa_demangle
, as has been suggested previously.
This is what we use. HAVE_CXA_DEMANGLE is only set if available (recent versions of GCC only).
#ifdef HAVE_CXA_DEMANGLE
const char* demangle(const char* name)
{
char buf[1024];
unsigned int size=1024;
int status;
char* res = abi::__cxa_demangle (name,
buf,
&size,
&status);
return res;
}
#else
const char* demangle(const char* name)
{
return name;
}
#endif
Here, take a look at type_strings.hpp it contains a function that does what you want.
If you just look for a demangling tool, which you e.g. could use to mangle stuff shown in a log file, take a look at c++filt
, which comes with binutils. It can demangle C++ and Java symbol names.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With