Trying to run a trained keras model with the following python code:
from keras.preprocessing.image import img_to_array
from keras.models import load_model
from imutils.video import VideoStream
from threading import Thread
import numpy as np
import imutils
import time
import cv2
import os
MODEL_PATH = "/home/pi/Documents/converted_keras/keras_model.h5"
print("[info] loading model..")
model = load_model(MODEL_PATH)
print("[info] starting vid stream..")
vs = VideoStream(usePiCamera=True).start()
time.sleep(2.0)
while True:
frame = vs.Read()
frame = imutils.resize(frame, width=400)
image = cv2.resize(frame, (28, 28))
image = image.astype("float") / 255.0
image = img_to_array(image)
image = np.expand_dims(image, axis=0)
(fuel, redBall, whiteBall, none) = model.predict(image)[0]
label = "none"
proba = none
if fuel > none and fuel > redBall and fuel > whiteBall:
label = "Fuel"
proba = fuel
elif redBall > none and redBall > fuel and redBall > whiteBall:
label = "Red Ball"
proba = redBall
elif whiteBall > none and whiteBall > redBall and whiteBall > fuel:
label = "white ball"
proba = whiteBall
else:
label = "none"
proba = none
label = "{}:{:.2f%}".format(label, proba * 100)
frame = cv2.putText(frame, label, (10, 25),
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)
cv2.imshow("Frame", frame)
key = cv2.waitKey(1) & 0xFF
if key == ord("q"):
break
print("[info] cleaning up..")
cv2.destroyAllWindows()
vs.stop()
When I run it with python3, I get the following error:
TypeError: __init__() got an unexpected keyword argument 'ragged'
What's causing the error, and how do I get around it?
Versions: Keras v2.3.1 tensorflow v1.13.1
Edit to add:
Traceback (most recent call last):
File "/home/pi/Documents/converted_keras/keras-script.py", line 18, in <module>
model = load_model(MODEL_PATH)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/saving.py", line 492, in load_wrapper
return load_function(*args, **kwargs)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/saving.py", line 584, in load_model
model = _deserialize_model(h5dict, custom_objects, compile)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/saving.py", line 274, in _deserialize_model
model = model_from_config(model_config, custom_objects=custom_objects)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/saving.py", line 627, in model_from_config
return deserialize(config, custom_objects=custom_objects)
File "/usr/local/lib/python3.7/dist-packages/keras/layers/__init__.py", line 168, in deserialize
printable_module_name='layer')
File "/usr/local/lib/python3.7/dist-packages/keras/utils/generic_utils.py", line 147, in deserialize_keras_object
list(custom_objects.items())))
File "/usr/local/lib/python3.7/dist-packages/keras/engine/sequential.py", line 301, in from_config
custom_objects=custom_objects)
File "/usr/local/lib/python3.7/dist-packages/keras/layers/__init__.py", line 168, in deserialize
printable_module_name='layer')
File "/usr/local/lib/python3.7/dist-packages/keras/utils/generic_utils.py", line 147, in deserialize_keras_object
list(custom_objects.items())))
File "/usr/local/lib/python3.7/dist-packages/keras/engine/sequential.py", line 301, in from_config
custom_objects=custom_objects)
File "/usr/local/lib/python3.7/dist-packages/keras/layers/__init__.py", line 168, in deserialize
printable_module_name='layer')
File "/usr/local/lib/python3.7/dist-packages/keras/utils/generic_utils.py", line 147, in deserialize_keras_object
list(custom_objects.items())))
File "/usr/local/lib/python3.7/dist-packages/keras/engine/network.py", line 1056, in from_config
process_layer(layer_data)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/network.py", line 1042, in process_layer
custom_objects=custom_objects)
File "/usr/local/lib/python3.7/dist-packages/keras/layers/__init__.py", line 168, in deserialize
printable_module_name='layer')
File "/usr/local/lib/python3.7/dist-packages/keras/utils/generic_utils.py", line 149, in deserialize_keras_object
return cls.from_config(config['config'])
File "/usr/local/lib/python3.7/dist-packages/keras/engine/base_layer.py", line 1179, in from_config
return cls(**config)
File "/usr/local/lib/python3.7/dist-packages/keras/legacy/interfaces.py", line 91, in wrapper
return func(*args, **kwargs)
TypeError: __init__() got an unexpected keyword argument 'ragged'
h5 file link (google drive)
So I tried link above which you have mentioned teachable machine
As it turns out model you have exported is from tensorflow.keras
and not directly from keras
API. These two are different. So while loading it might be using tf.ragged tensors that might not be compatible with keras API.
Soulution to your issue:
Don't import keras directly as your model is saved with Tensorflow's keras high level api. Change all your imports to tensorflow.keras
Change:
from keras.preprocessing.image import img_to_array
from keras.models import load_model
to this:
from tensorflow.keras.preprocessing.image import img_to_array
from tensorflow.keras.models import load_model
It will solve your issue.
EDIT :
All of your imports, either should be from Keras
or tensorflow.keras
. Although being same API few things are different which creates these kind of issues. Also for tensorflow
backend tf.keras
is preferred, because Keras 2.3.0 is last major release which will support backends other than tensorflow.
This release brings the API in sync with the tf.keras API as of TensorFlow 2.0. However note that it does not support most TensorFlow 2.0 features, in particular eager execution. If you need these features, use tf.keras. This is also the last major release of multi-backend Keras. Going forward, we recommend that users consider switching their Keras code to tf.keras in TensorFlow 2.0.
Like @Vivek Mehta said,
first change load_model from keras
to tensorflow.keras
i.e
from tensorflow.keras.models import load_model
But even then if the model loading shows error like KeyError: 'sample_weight_mode'
then do the following
from tensorflow.keras.models import load_model
model = load_model('model.h5', compile = False)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With