I have a small corpus and I want to calculate the accuracy of naive Bayes classifier using 10-fold cross validation, how can do it.
First Approach (In case of a single feature) Step 1: Calculate the prior probability for given class labels. Step 2: Find Likelihood probability with each attribute for each class. Step 3: Put these value in Bayes Formula and calculate posterior probability.
Your options are to either set this up yourself or use something like NLTK-Trainer since NLTK doesn't directly support cross-validation for machine learning algorithms.
I'd recommend probably just using another module to do this for you but if you really want to write your own code you could do something like the following.
Supposing you want 10-fold, you would have to partition your training set into 10
subsets, train on 9/10
, test on the remaining 1/10
, and do this for each combination of subsets (10
).
Assuming your training set is in a list named training
, a simple way to accomplish this would be,
num_folds = 10 subset_size = len(training)/num_folds for i in range(num_folds): testing_this_round = training[i*subset_size:][:subset_size] training_this_round = training[:i*subset_size] + training[(i+1)*subset_size:] # train using training_this_round # evaluate against testing_this_round # save accuracy # find mean accuracy over all rounds
Actually there is no need for a long loop iterations that are provided in the most upvoted answer. Also the choice of classifier is irrelevant (it can be any classifier).
Scikit provides cross_val_score, which does all the looping under the hood.
from sklearn.cross_validation import KFold, cross_val_score k_fold = KFold(len(y), n_folds=10, shuffle=True, random_state=0) clf = <any classifier> print cross_val_score(clf, X, y, cv=k_fold, n_jobs=1)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With