I'm trying to implement turtle graphics in Haskell. The goal is to be able to write a function like this:
draw_something = do
forward 100
right 90
forward 100
...
and then have it produce a list of points (maybe with additional properties):
> draw_something (0,0) 0 -- start at (0,0) facing east (0 degrees)
[(0,0), (0,100), (-100,100), ...]
I have all this working in a 'normal' way, but I've failed to implement it as a Haskell Monad and use the do-notation. The basic code:
data State a = State (a, a) a -- (x,y), angle
deriving (Show, Eq)
initstate :: State Float
initstate = State (0.0,0.0) 0.0
-- constrain angles to 0 to 2*pi
fmod :: Float -> Float
fmod a
| a >= 2*pi = fmod (a-2*pi)
| a < 0 = fmod (a+2*pi)
| otherwise = a
forward :: Float -> State Float -> [State Float]
forward d (State (x,y) angle) = [State (x + d * (sin angle), y + d * (cos angle)) angle]
right :: Float -> State Float -> [State Float]
right d (State pos angle) = [State pos (fmod (angle+d))]
bind :: [State a] -> (State a -> [State a]) -> [State a]
bind xs f = xs ++ (f (head $ reverse xs))
ret :: State a -> [State a]
ret x = [x]
With this I can now write
> [initstate] `bind` (forward 100) `bind` (right (pi/2)) `bind` (forward 100)
[State (0.0,0.0) 0.0,State (0.0,100.0) 0.0,State (0.0,100.0) 1.5707964,State (100.0,99.99999) 1.5707964]
And get the expected result. However I can't make this an instance of Monad
.
instance Monad [State] where
...
results in
`State' is not applied to enough type arguments
Expected kind `*', but `State' has kind `* -> *'
In the instance declaration for `Monad [State]'
And if I wrap the list in a new object
data StateList a = StateList [State a]
instance Monad StateList where
return x = StateList [x]
I get
Couldn't match type `a' with `State a'
`a' is a rigid type variable bound by
the type signature for return :: a -> StateList a
at logo.hs:38:9
In the expression: x
In the first argument of `StateList', namely `[x]'
In the expression: StateList [x]
I tried various other versions but I never got it to run as I'd like to. What am I doing wrong? What do I understand incorrectly?
The monad you're devising needs to have two type parameters. One for the saved trail (which will be fixed for a particular do
sequence) and other for the results of computations.
You also need to think about how to compose two turtle-monadic values so that the binding operation is associative. For example,
right 90 >> (right 90 >> forward 100)
must be equal to
(right 90 >> right 90) >> forward 100
(and of course similarly for >>=
etc.). This means that if you represent the turtle's history by a list of points, the binding operation most likely just cannot append the lists of points together; forward 100
alone will result in something like [(0,0),(100,0)]
but when it's prepended with rotation, the saved points need to be rotated too.
I'd say that the simplest approach would be to use the Writer
monad. But I wouldn't save the points, I'd save just the actions the turtle performs (so that we don't need to rotate the points when combining the values). Something like
data Action = Rotate Double | Forward Double
type TurtleMonad a = Writer [Action] a
(This also means that we don't need to track the current direction, it's contained in the actions.) Then each of your functions just writes its argument into the Writer
. And at the end, you can extract the final list from it and make a simple function that converts all the actions into a list of points:
track :: [Action] -> [(Double,Double)]
Update: Instead of using [Action]
it would be better to use Seq
from Data.Sequence. It's also a monoid and concatenating two sequences is very fast, it's amortized complexity is O(log(min(n1,n2))), compared to O(n1) of (++)
. So the improved type would be
type TurtleMonad a = Writer (Seq Action) a
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With