I am writing a toy kernel for learning purposes, and I am having a bit of trouble with it. I have made a simple bootloader that loads a segment from a floppy disk (which is written in 32 bit code), then the bootloader enables the A20 gate and turns on protected mode. I can jump to the 32 bit code fine if I write it in assembler, but if I write it in C, I get a triple fault. When I disassemble the C code I can see that the first two instructions involve setting up a new stack frame. This is the key difference between the working ASM code and the failing C code. I am using NASM v2.10.05 for the ASM code, and GCC from the DJGPP 4.72 collection for the C code.
This is the bootloader code:
org 7c00h
BITS 16
entry:
mov [drive], dl ;Save the current drive
cli
mov ax,cs ; Setup segment registers
mov ds,ax ; Make DS correct
mov ss,ax ; Make SS correct
mov bp,0fffeh
mov sp,0fffeh ;Setup a temporary stack
sti
;Set video mode to text
;===================
mov ah, 0
mov al, 3
int 10h
;===================
;Set current page to 0
;==================
mov ah, 5
mov al, 0
int 10h
;==================
;Load the sector
;=============
call load_image
;=============
;Clear interrupts
;=============
cli
;=============
;Disable NMIs
;============
in ax, 70h
and ax, 80h ;Set the high bit to 1
out 70h, ax
;============
;Enable A20:
;===========
mov ax, 02401h
int 15h
;===========
;Load the GDT
;===========
lgdt [gdt_pointer]
;===========
;Clear interrupts
;=============
cli
;=============
;Enter protected mode
;==================
mov eax, cr0
or eax, 1 ;Set the low bit to 1
mov cr0, eax
;==================
jmp 08h:clear_pipe ;Far jump to clear the instruction queue
;======================================================
load_image:
reset_drive:
mov ah, 00h
; DL contains *this* drive, given to us by the BIOS
int 13h
jc reset_drive
read_sectors:
mov ah, 02h
mov al, 01h
mov ch, 00h
mov cl, 02h
mov dh, 00h
; DL contains *this* drive, given to us by the BIOS
mov bx, 7E0h
mov es, bx
mov bx, 0
int 13h
jc read_sectors
ret
;======================================================
BITS 32 ;Protected mode now!
clear_pipe:
mov ax, 10h ; Save data segment identifier
mov ds, ax ; Move a valid data segment into the data segment register
mov es, ax
mov fs, ax
mov gs, ax
mov ss, ax ; Move a valid data segment into the stack segment register
mov esp, 90000h ; Move the stack pointer to 90000h
mov ebp, esp
jmp 08h:7E00h ;Jump to the kernel proper
;===============================================
;========== GLOBAL DESCRIPTOR TABLE ==========
;===============================================
gdt: ; Address for the GDT
gdt_null: ; Null Segment
dd 0
dd 0
gdt_code: ; Code segment, read/execute, nonconforming
dw 0FFFFh ; LIMIT, low 16 bits
dw 0 ; BASE, low 16 bits
db 0 ; BASE, middle 8 bits
db 10011010b ; ACCESS byte
db 11001111b ; GRANULARITY byte
db 0 ; BASE, low 8 bits
gdt_data: ; Data segment, read/write, expand down
dw 0FFFFh
dw 0
db 0
db 10010010b
db 11001111b
db 0
gdt_end: ; Used to calculate the size of the GDT
gdt_pointer: ; The GDT descriptor
dw gdt_end - gdt - 1 ; Limit (size)
dd gdt ; Address of the GDT
;===============================================
;===============================================
drive: db 00 ;A byte to store the current drive in
times 510-($-$$) db 00
db 055h
db 0AAh
And this is the kernel code:
void main()
{
asm("mov byte ptr [0x8000], 'T'");
asm("mov byte ptr [0x8001], 'e'");
asm("mov byte ptr [0x8002], 's'");
asm("mov byte ptr [0x8003], 't'");
}
The kernel simply inserts those four bytes into memory, which I can check as I am running the code in a VMPlayer virtual machine. If the bytes appear, then I know the code is working. If I write code in ASM that looks like this, then the program works:
org 7E00h
BITS 32
main:
mov byte [8000h], 'T'
mov byte [8001h], 'e'
mov byte [8002h], 's'
mov byte [8003h], 't'
hang:
jmp hang
The only differences are therefore the two stack operations I found in the disassembled C code, which are these:
push ebp
mov ebp, esp
Any help on this matter would be greatly appreciated. I figure I am missing something relatively minor, but crucial, here, as I know this sort of thing is possible to do.
Try using the technique here:
Is there a way to get gcc to output raw binary?
to produce a flat binary of the .text section from your object file.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With