Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

transform scipy sparse csr to pandas?

I have used the

sklearn.preprocessing.OneHotEncoder

to transform some data the output is scipy.sparse.csr.csr_matrix how can I merge it back into my original dataframe along with the other columns?

I tried to use pd.concat but I get

TypeError: cannot concatenate a non-NDFrame object

Thanks

like image 824
KillerSnail Avatar asked May 01 '16 14:05

KillerSnail


People also ask

How do you convert a sparse matrix into a DataFrame?

from_spmatrix() function. The sparse-from_spmatrix() function is used to create a new DataFrame from a scipy sparse matrix. Must be convertible to csc format. Row and column labels to use for the resulting DataFrame.

How do you convert sparse mats to dense in Python?

1 Answer. You can use either todense() or toarray() function to convert a CSR matrix to a dense matrix.


3 Answers

If A is csr_matrix, you can use .toarray() (there's also .todense() that produces a numpy matrix, which is also works for the DataFrame constructor):

df = pd.DataFrame(A.toarray())

You can then use this with pd.concat().

A = csr_matrix([[1, 0, 2], [0, 3, 0]])
    
  (0, 0)    1
  (0, 2)    2
  (1, 1)    3

<class 'scipy.sparse.csr.csr_matrix'>

pd.DataFrame(A.todense())

   0  1  2
0  1  0  2
1  0  3  0

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2 entries, 0 to 1
Data columns (total 3 columns):
0    2 non-null int64
1    2 non-null int64
2    2 non-null int64

In version 0.20, pandas introduced sparse data structures, including the SparseDataFrame.

In pandas 1.0, SparseDataFrame was removed:

In older versions of pandas, the SparseSeries and SparseDataFrame classes were the preferred way to work with sparse data. With the advent of extension arrays, these subclasses are no longer needed. Their purpose is better served by using a regular Series or DataFrame with sparse values instead.

The migration guide shows how to use these new data structures.

For instance, to create a DataFrame from a sparse matrix:

from scipy.sparse import csr_matrix

A = csr_matrix([[1, 0, 2], [0, 3, 0]])

df = pd.DataFrame.sparse.from_spmatrix(A, columns=['A', 'B', 'C'])

df

   A  B  C
0  1  0  2
1  0  3  0

df.dtypes
A    Sparse[float64, 0]
B    Sparse[float64, 0]
C    Sparse[float64, 0]
dtype: object

Alternatively, you can pass sparse matrices to sklearn to avoid running out of memory when converting back to pandas. Just convert your other data to sparse format by passing a numpy array to the scipy.sparse.csr_matrix constructor and use scipy.sparse.hstack to combine (see docs).

like image 157
Stefan Avatar answered Oct 18 '22 22:10

Stefan


UPDATE for Pandas 1.0+

Per the Pandas Sparse data structures documentation, SparseDataFrame and SparseSeries have been removed.

Sparse Pandas Dataframes

Previous Way

pd.SparseDataFrame({"A": [0, 1]})

New Way

pd.DataFrame({"A": pd.arrays.SparseArray([0, 1])})

Working with SciPy sparse csr_matrix

Previous Way

from scipy.sparse import csr_matrix
matrix = csr_matrix((3, 4), dtype=np.int8)
df = pd.SparseDataFrame(matrix, columns=['A', 'B', 'C'])

New Way

from scipy.sparse import csr_matrix
import numpy as np
import pandas as pd

matrix = csr_matrix((3, 4), dtype=np.int8)
df = pd.DataFrame.sparse.from_spmatrix(matrix, columns=['A', 'B', 'C', 'D'])
df.dtypes

Output:

A    Sparse[int8, 0]
B    Sparse[int8, 0]
C    Sparse[int8, 0]
D    Sparse[int8, 0]
dtype: object

Conversion from Sparse to Dense

df.sparse.to_dense()                                                                                                                                                                            

Output:

   A  B  C  D
0  0  0  0  0
1  0  0  0  0
2  0  0  0  0

Sparse Properties

df.sparse.density                                                                                                                                                                           

Output:

0.0
like image 37
Christopher Peisert Avatar answered Oct 18 '22 21:10

Christopher Peisert


You could also avoid getting back a sparse matrix in the first place by setting the parameter sparse to False when creating the Encoder.

The documentation of the OneHotEncoder states:

sparse : boolean, default=True

Will return sparse matrix if set True else will return an array.

Then you can again call the DataFrame constructor to transform the numpy array to a DataFrame.

like image 3
scriptator Avatar answered Oct 18 '22 22:10

scriptator