I have used the
sklearn.preprocessing.OneHotEncoder
to transform some data the output is scipy.sparse.csr.csr_matrix
how can I merge it back into my original dataframe along with the other columns?
I tried to use pd.concat
but I get
TypeError: cannot concatenate a non-NDFrame object
Thanks
from_spmatrix() function. The sparse-from_spmatrix() function is used to create a new DataFrame from a scipy sparse matrix. Must be convertible to csc format. Row and column labels to use for the resulting DataFrame.
1 Answer. You can use either todense() or toarray() function to convert a CSR matrix to a dense matrix.
If A is csr_matrix
, you can use .toarray()
(there's also .todense()
that produces a numpy
matrix
, which is also works for the DataFrame
constructor):
df = pd.DataFrame(A.toarray())
You can then use this with pd.concat()
.
A = csr_matrix([[1, 0, 2], [0, 3, 0]])
(0, 0) 1
(0, 2) 2
(1, 1) 3
<class 'scipy.sparse.csr.csr_matrix'>
pd.DataFrame(A.todense())
0 1 2
0 1 0 2
1 0 3 0
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2 entries, 0 to 1
Data columns (total 3 columns):
0 2 non-null int64
1 2 non-null int64
2 2 non-null int64
In version 0.20, pandas
introduced sparse data structures, including the SparseDataFrame
.
In pandas 1.0, SparseDataFrame
was removed:
In older versions of pandas, the
SparseSeries
andSparseDataFrame
classes were the preferred way to work with sparse data. With the advent of extension arrays, these subclasses are no longer needed. Their purpose is better served by using a regular Series or DataFrame with sparse values instead.
The migration guide shows how to use these new data structures.
For instance, to create a DataFrame
from a sparse matrix:
from scipy.sparse import csr_matrix
A = csr_matrix([[1, 0, 2], [0, 3, 0]])
df = pd.DataFrame.sparse.from_spmatrix(A, columns=['A', 'B', 'C'])
df
A B C
0 1 0 2
1 0 3 0
df.dtypes
A Sparse[float64, 0]
B Sparse[float64, 0]
C Sparse[float64, 0]
dtype: object
Alternatively, you can pass sparse matrices to sklearn
to avoid running out of memory when converting back to pandas
. Just convert your other data to sparse format by passing a numpy
array
to the scipy.sparse.csr_matrix
constructor and use scipy.sparse.hstack
to combine (see docs).
Per the Pandas Sparse data structures documentation, SparseDataFrame
and SparseSeries
have been removed.
pd.SparseDataFrame({"A": [0, 1]})
pd.DataFrame({"A": pd.arrays.SparseArray([0, 1])})
csr_matrix
from scipy.sparse import csr_matrix
matrix = csr_matrix((3, 4), dtype=np.int8)
df = pd.SparseDataFrame(matrix, columns=['A', 'B', 'C'])
from scipy.sparse import csr_matrix
import numpy as np
import pandas as pd
matrix = csr_matrix((3, 4), dtype=np.int8)
df = pd.DataFrame.sparse.from_spmatrix(matrix, columns=['A', 'B', 'C', 'D'])
df.dtypes
Output:
A Sparse[int8, 0]
B Sparse[int8, 0]
C Sparse[int8, 0]
D Sparse[int8, 0]
dtype: object
df.sparse.to_dense()
Output:
A B C D
0 0 0 0 0
1 0 0 0 0
2 0 0 0 0
df.sparse.density
Output:
0.0
You could also avoid getting back a sparse matrix in the first place by setting the parameter sparse
to False
when creating the Encoder.
The documentation of the OneHotEncoder states:
sparse : boolean, default=True
Will return sparse matrix if set True else will return an array.
Then you can again call the DataFrame constructor to transform the numpy array to a DataFrame.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With