Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

tensorflow: how to rotate an image for data augmentation?

In tensorflow, I would like to rotate an image from a random angle, for data augmentation. But I don't find this transformation in the tf.image module.

like image 404
Mostafa Avatar asked Jan 14 '16 22:01

Mostafa


2 Answers

This can be done in tensorflow now:

tf.contrib.image.rotate(images, degrees * math.pi / 180, interpolation='BILINEAR')
like image 140
Andrew Stromme Avatar answered Oct 05 '22 05:10

Andrew Stromme


Because I wanted to be able to rotate tensors I came up with the following piece of code, which rotates a [height, width, depth] tensor by a given angle:

def rotate_image_tensor(image, angle, mode='black'):
    """
    Rotates a 3D tensor (HWD), which represents an image by given radian angle.

    New image has the same size as the input image.

    mode controls what happens to border pixels.
    mode = 'black' results in black bars (value 0 in unknown areas)
    mode = 'white' results in value 255 in unknown areas
    mode = 'ones' results in value 1 in unknown areas
    mode = 'repeat' keeps repeating the closest pixel known
    """
    s = image.get_shape().as_list()
    assert len(s) == 3, "Input needs to be 3D."
    assert (mode == 'repeat') or (mode == 'black') or (mode == 'white') or (mode == 'ones'), "Unknown boundary mode."
    image_center = [np.floor(x/2) for x in s]

    # Coordinates of new image
    coord1 = tf.range(s[0])
    coord2 = tf.range(s[1])

    # Create vectors of those coordinates in order to vectorize the image
    coord1_vec = tf.tile(coord1, [s[1]])

    coord2_vec_unordered = tf.tile(coord2, [s[0]])
    coord2_vec_unordered = tf.reshape(coord2_vec_unordered, [s[0], s[1]])
    coord2_vec = tf.reshape(tf.transpose(coord2_vec_unordered, [1, 0]), [-1])

    # center coordinates since rotation center is supposed to be in the image center
    coord1_vec_centered = coord1_vec - image_center[0]
    coord2_vec_centered = coord2_vec - image_center[1]

    coord_new_centered = tf.cast(tf.pack([coord1_vec_centered, coord2_vec_centered]), tf.float32)

    # Perform backward transformation of the image coordinates
    rot_mat_inv = tf.dynamic_stitch([[0], [1], [2], [3]], [tf.cos(angle), tf.sin(angle), -tf.sin(angle), tf.cos(angle)])
    rot_mat_inv = tf.reshape(rot_mat_inv, shape=[2, 2])
    coord_old_centered = tf.matmul(rot_mat_inv, coord_new_centered)

    # Find nearest neighbor in old image
    coord1_old_nn = tf.cast(tf.round(coord_old_centered[0, :] + image_center[0]), tf.int32)
    coord2_old_nn = tf.cast(tf.round(coord_old_centered[1, :] + image_center[1]), tf.int32)

    # Clip values to stay inside image coordinates
    if mode == 'repeat':
        coord_old1_clipped = tf.minimum(tf.maximum(coord1_old_nn, 0), s[0]-1)
        coord_old2_clipped = tf.minimum(tf.maximum(coord2_old_nn, 0), s[1]-1)
    else:
        outside_ind1 = tf.logical_or(tf.greater(coord1_old_nn, s[0]-1), tf.less(coord1_old_nn, 0))
        outside_ind2 = tf.logical_or(tf.greater(coord2_old_nn, s[1]-1), tf.less(coord2_old_nn, 0))
        outside_ind = tf.logical_or(outside_ind1, outside_ind2)

        coord_old1_clipped = tf.boolean_mask(coord1_old_nn, tf.logical_not(outside_ind))
        coord_old2_clipped = tf.boolean_mask(coord2_old_nn, tf.logical_not(outside_ind))

        coord1_vec = tf.boolean_mask(coord1_vec, tf.logical_not(outside_ind))
        coord2_vec = tf.boolean_mask(coord2_vec, tf.logical_not(outside_ind))

    coord_old_clipped = tf.cast(tf.transpose(tf.pack([coord_old1_clipped, coord_old2_clipped]), [1, 0]), tf.int32)

    # Coordinates of the new image
    coord_new = tf.transpose(tf.cast(tf.pack([coord1_vec, coord2_vec]), tf.int32), [1, 0])

    image_channel_list = tf.split(2, s[2], image)

    image_rotated_channel_list = list()
    for image_channel in image_channel_list:
        image_chan_new_values = tf.gather_nd(tf.squeeze(image_channel), coord_old_clipped)

        if (mode == 'black') or (mode == 'repeat'):
            background_color = 0
        elif mode == 'ones':
            background_color = 1
        elif mode == 'white':
            background_color = 255

        image_rotated_channel_list.append(tf.sparse_to_dense(coord_new, [s[0], s[1]], image_chan_new_values,
                                                             background_color, validate_indices=False))

    image_rotated = tf.transpose(tf.pack(image_rotated_channel_list), [1, 2, 0])

    return image_rotated
like image 22
zimmermc Avatar answered Oct 05 '22 05:10

zimmermc