import torch
import torch.nn as nn
device = torch.device('cuda' if torch.cuda.is_available() else
'cpu')
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
self.layer = nn.Sequential(
nn.Conv2d(1, 16, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(16),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2), # 16x16x650
nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1), # 32x16x650
nn.ReLU(),
nn.Dropout2d(0.5),
nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1), # 64x16x650
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2), # 64x8x325
nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
nn.ReLU()) # 64x8x325
self.fc = nn.Sequential(
nn.Linear(64*8*325, 128),
nn.ReLU(),
nn.Linear(128, 256),
nn.ReLU(),
nn.Linear(256, 1),
)
def forward(self, x):
out = self.layer1(x)
out = self.layer2(out)
out = out.reshape(out.size(0), -1)
out = self.fc(out)
return out
# HYPERPARAMETER
learning_rate = 0.0001
num_epochs = 15
import data
def main():
model = Model().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(),
lr=learning_rate)
total_step = len(data.train_loader)
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(data.train_loader):
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
loss = criterion(outputs, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (i + 1) % 100 == 0:
print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'
.format(epoch + 1, num_epochs, i + 1, total_step, loss.item()))
model.eval()
with torch.no_grad():
correct = 0
total = 0
for images, labels in data.test_loader:
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Test Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total))
if __name__ == '__main__':
main()
Error:
File "/home/rladhkstn8/Desktop/SWID/tmp/pycharm_project_853/model.py", line 82, in <module>
main()
File "/home/rladhkstn8/Desktop/SWID/tmp/pycharm_project_853/model.py", line 56, in main
outputs = model(images)
File "/home/rladhkstn8/anaconda3/lib/python3.6/site-packages/torch/nn/modules/module.py", line 477, in __call__
result = self.forward(*input, **kwargs)
File "/home/rladhkstn8/anaconda3/lib/python3.6/site-packages/torch/nn/modules/module.py", line 83, in forward
raise NotImplementedError
NotImplementedError
I do not know where the problem is. I know that NotImplementedError
should be implemented, but it happens when there is unimplemented code.
please look carefully at the indentation of your __init__
function: your forward
is part of __init__
not part of your module.
This error happens when you don't implement the required method from super class, in my case, i had typo on the function name forward. I recommend you check your code indentation.
Just unindent your forward method in Model class.
like this:
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
self.layer = nn.Sequential(
nn.Conv2d(1, 16, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(16),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2), # 16x16x650
nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1), # 32x16x650
nn.ReLU(),
nn.Dropout2d(0.5),
nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1), # 64x16x650
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2), # 64x8x325
nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
nn.ReLU()) # 64x8x325
self.fc = nn.Sequential(
nn.Linear(64*8*325, 128),
nn.ReLU(),
nn.Linear(128, 256),
nn.ReLU(),
nn.Linear(256, 1),
)
def forward(self, x):
out = self.layer1(x)
out = self.layer2(out)
out = out.reshape(out.size(0), -1)
out = self.fc(out)
return out
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With