When running the Tensorflow Object Detection API with the current release of Tensorflow-Gpu (1.5), the following error gets thrown, when trying to train on a custom set of images.
INFO:tensorflow:Scale of 0 disables regularizer.
INFO:tensorflow:Scale of 0 disables regularizer.
WARNING:tensorflow:From C:\tensorflow1\models\research\object_detection\trainer.py:228: create_global_step (from tensorflow.contrib.framework.python.ops.variables) is deprecated and will be removed in a future version.
Instructions for updating:
Please switch to tf.train.create_global_step
Traceback (most recent call last):
File "train.py", line 167, in <module>
tf.app.run()
File "C:\Users\Vic-10-3\AppData\Local\Continuum\anaconda3\envs\tensorflow1\lib\site-packages\tensorflow\python\platform\app.py", line 124, in run
_sys.exit(main(argv))
File "train.py", line 163, in main
worker_job_name, is_chief, FLAGS.train_dir)
File "C:\tensorflow1\models\research\object_detection\trainer.py", line 235, in train
train_config.prefetch_queue_capacity, data_augmentation_options)
File "C:\tensorflow1\models\research\object_detection\trainer.py", line 59, in create_input_queue
tensor_dict = create_tensor_dict_fn()
File "train.py", line 120, in get_next
dataset_builder.build(config)).get_next()
File "C:\tensorflow1\models\research\object_detection\builders\dataset_builder.py", line 138, in build
label_map_proto_file=label_map_proto_file)
File "C:\tensorflow1\models\research\object_detection\data_decoders\tf_example_decoder.py", line 110, in __init__
dct_method=dct_method),
TypeError: __init__() got an unexpected keyword argument 'dct_method'
The expected behavior would be to run the actual training, but apparently something became incompatible with the latest release.
Instruction for reproducing the error: Follow the tutorial and train on a custom dataset.
This error is due to the incompatibility of file tf_example_decoder.py with the Tensorflow installed.
In file models/research/object_detection/data_decoders/tf_example_decoder.py:
line 28:
slim_example_decoder = tf.contrib.slim.tfexample_decoder
line 104:
self.items_to_handlers = {
fields.InputDataFields.image:
slim_example_decoder.Image(
image_key='image/encoded',
format_key='image/format',
channels=3,
dct_method=dct_method),....
.....
....
..
.
}
slim_example_decoder.Image is tf.contrib.slim.tfexample_decoder.Image
In Tensorflow 1.5 source code tf.contrib.slim.tfexample_decoder.Image
doesn't have dct_method
argument. Therefore when dct_method
argument is passed it throws an error.
A simple hack would be to not pass this argument. So edit tf_example_decoder.py line 110 to remove dct_method=dct_method
. I tried this and it worked and didn't had any effect on training.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With