Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

SVM classifier based on HOG features for "object detection" in OpenCV

I have a project, which I want to detect objects in the images; my aim is to use HOG features. By using OpenCV SVM implementation , I could find the code for detecting people, and I read some papers about tuning the parameters in order to detect object instead of people. Unfortunately, I couldn't do that for a few reasons; first of all, I am probably tuning the parameters incorrectly, second of all, I am not a good programmer in C++ but I have to do it with C++/OpenCV... here you can find the code for detecting HOG features for people by using C++/OpenCV.

Let's say that I want to detect the object in this image. Now, I will show you what I have tried to change in the code but it didn't work out with me.

The code that I tried to change:

HOGDescriptor hog;
hog.setSVMDetector(HOGDescriptor::getDefaultPeopleDetector());

I tried to change getDefaultPeopleDetector() with the following parameters, but it didn't work:

(Size(64, 128), Size(16, 16), Size(8, 8), Size(8, 8), 9, 0,-1, 0, 0.2, true, cv::HOGDescriptor::DEFAULT_NLEVELS)

I then tried to make a vector, but when I wanted to print the results, it seems to be empty.

vector<float> detector;

HOGDescriptor hog(Size(64, 128), Size(16, 16), Size(8, 8), Size(8, 8), 9, 0,-1, 0, 0.2, true, cv::HOGDescriptor::DEFAULT_NLEVELS);

hog.setSVMDetector(detector);

Please, I need help solving this problem.

like image 687
Mario Avatar asked May 26 '12 20:05

Mario


People also ask

Can SVM be used for object detection?

One of the advantages of SVM is that, with limited training data, it may generate comparable or even better results than the other methods. The SVM algorithm is used for automated object detection and characterization.

What is SVM HOG?

Histogram of oriented gradients (HOG) is used for feature extraction in the human detection process, whilst linear support vector machines (SVM) are used for human classification. A set of tests is conducted to find the classifiers which optimize recall in the detection of persons in visible video sequences.

What is HOG object detection?

Histogram of Oriented Gradients, also known as HOG, is a feature descriptor like the Canny Edge Detector, SIFT (Scale Invariant and Feature Transform) . It is used in computer vision and image processing for the purpose of object detection.


3 Answers

In order to detect arbitrary objects with using opencv HOG descriptors and SVM classifier, you need to first train the classifier. Playing with the parameters will not help here, sorry :( .

In broad terms, you will need to complete the following steps:

Step 1) Prepare some training images of the objects you want to detect (positive samples). Also you will need to prepare some images with no objects of interest (negative samples).

Step 2) Detect HOG features of the training sample and use this features to train an SVM classifier (also provided in OpenCV).

Step 3) Use the coefficients of the trained SVM classifier in HOGDescriptor::setSVMDetector() method.

Only then, you can use the peopledetector.cpp sample code, to detect the objects you want to detect.

like image 152
Hakan Serce Avatar answered Oct 21 '22 10:10

Hakan Serce


I've been dealing with the same problem and surprised with the lack of some clean C++ solutions I have create ~> this wrapper of SVMLight <~, which is a static library that provides classes SVMTrainer and SVMClassifier that simplify the training to something like:

// we are going to use HOG to obtain feature vectors:
HOGDescriptor hog;
hog.winSize = Size(32,48);

// and feed SVM with them:
SVMLight::SVMTrainer svm("features.dat");

then for each training sample:

// obtain feature vector describing sample image:
vector<float> featureVector;
hog.compute(img, featureVector, Size(8, 8), Size(0, 0));

// and write feature vector to the file:
svm.writeFeatureVectorToFile(featureVector, true);      // true = positive sample

till the features.dat file contains feature vectors for all samples and at the end you just call:

std::string modelName("classifier.dat");
svm.trainAndSaveModel(modelName);

Once you have a file with model (or features.dat that you can just train the classifier with):

SVMLight::SVMClassifier c(classifierModelName);
vector<float> descriptorVector = c.getDescriptorVector();
hog.setSVMDetector(descriptorVector);
...
vector<Rect> found;
Size padding(Size(0, 0));
Size winStride(Size(8, 8));
hog.detectMultiScale(segment, found, 0.0, winStride, padding, 1.01, 0.1);

just check the documentation of HOGDescriptor for more info :)

like image 44
LihO Avatar answered Oct 21 '22 09:10

LihO


I have done similar things as you did: collect samples of positive and negative images using HOG to extract features of car, train the feature set using linear SVM (I use SVM light), then use the model to detect car using HOG multidetect function.

I get lot of false positives, then I retrain the data using positive samples and false positive+negative samples. The resulting model is then tested again. The resulting detection improves (less false positives) but the result is not satisfying (average 50% hit rate and 50% false positives). Tuning up multidetect parameters improve the result but not much (10% less false positives and increase in hit rate).

Edit I can share you the source code if you'd like, and I am very open for discussion as I have not get satisfactory results using HOG. Anyway, I think the code can be good starting point on using HOG for training and detection

Edit: adding code

static void calculateFeaturesFromInput(const string& imageFilename, vector<float>& featureVector, HOGDescriptor& hog) 
{
    Mat imageData = imread(imageFilename, 1);
    if (imageData.empty()) {
        featureVector.clear();
        printf("Error: HOG image '%s' is empty, features calculation skipped!\n", imageFilename.c_str());
        return;
    }
    // Check for mismatching dimensions
    if (imageData.cols != hog.winSize.width || imageData.rows != hog.winSize.height) {
       featureVector.clear();
       printf("Error: Image '%s' dimensions (%u x %u) do not match HOG window size (%u x %u)!\n", imageFilename.c_str(), imageData.cols, imageData.rows, hog.winSize.width, hog.winSize.height);
        return;
    }
    vector<Point> locations;
    hog.compute(imageData, featureVector, winStride, trainingPadding, locations);
    imageData.release(); // Release the image again after features are extracted
}

...

int main(int argc, char** argv) {

    // <editor-fold defaultstate="collapsed" desc="Init">
    HOGDescriptor hog; // Use standard parameters here
    hog.winSize.height = 128;
    hog.winSize.width = 64;

    // Get the files to train from somewhere
    static vector<string> tesImages;
    static vector<string> positiveTrainingImages;
    static vector<string> negativeTrainingImages;
    static vector<string> validExtensions;
    validExtensions.push_back("jpg");
    validExtensions.push_back("png");
    validExtensions.push_back("ppm");
    validExtensions.push_back("pgm");
    // </editor-fold>

    // <editor-fold defaultstate="collapsed" desc="Read image files">
    getFilesInDirectory(posSamplesDir, positiveTrainingImages, validExtensions);
    getFilesInDirectory(negSamplesDir, negativeTrainingImages, validExtensions);
    /// Retrieve the descriptor vectors from the samples
    unsigned long overallSamples = positiveTrainingImages.size() + negativeTrainingImages.size();
    // </editor-fold>

    // <editor-fold defaultstate="collapsed" desc="Calculate HOG features and save to file">
    // Make sure there are actually samples to train
    if (overallSamples == 0) {
        printf("No training sample files found, nothing to do!\n");
        return EXIT_SUCCESS;
    }

    /// @WARNING: This is really important, some libraries (e.g. ROS) seems to set the system locale which takes decimal commata instead of points which causes the file input parsing to fail
    setlocale(LC_ALL, "C"); // Do not use the system locale
    setlocale(LC_NUMERIC,"C");
    setlocale(LC_ALL, "POSIX");

    printf("Reading files, generating HOG features and save them to file '%s':\n", featuresFile.c_str());
    float percent;
    /**
     * Save the calculated descriptor vectors to a file in a format that can be used by SVMlight for training
     * @NOTE: If you split these steps into separate steps: 
     * 1. calculating features into memory (e.g. into a cv::Mat or vector< vector<float> >), 
     * 2. saving features to file / directly inject from memory to machine learning algorithm,
     * the program may consume a considerable amount of main memory
     */ 
    fstream File;
    File.open(featuresFile.c_str(), ios::out);
    if (File.good() && File.is_open()) {
        File << "# Use this file to train, e.g. SVMlight by issuing $ svm_learn -i 1 -a weights.txt " << featuresFile.c_str() << endl; // Remove this line for libsvm which does not support comments
        // Iterate over sample images
        for (unsigned long currentFile = 0; currentFile < overallSamples; ++currentFile) {
            storeCursor();
            vector<float> featureVector;
            // Get positive or negative sample image file path
            const string currentImageFile = (currentFile < positiveTrainingImages.size() ? positiveTrainingImages.at(currentFile) : negativeTrainingImages.at(currentFile - positiveTrainingImages.size()));
            // Output progress
            if ( (currentFile+1) % 10 == 0 || (currentFile+1) == overallSamples ) {
                percent = ((currentFile+1) * 100 / overallSamples);
                printf("%5lu (%3.0f%%):\tFile '%s'", (currentFile+1), percent, currentImageFile.c_str());
                fflush(stdout);
                resetCursor();
            }
            // Calculate feature vector from current image file
            calculateFeaturesFromInput(currentImageFile, featureVector, hog);
            if (!featureVector.empty()) {
                /* Put positive or negative sample class to file, 
                 * true=positive, false=negative, 
                 * and convert positive class to +1 and negative class to -1 for SVMlight
                 */
                File << ((currentFile < positiveTrainingImages.size()) ? "+1" : "-1");
                // Save feature vector components
                for (unsigned int feature = 0; feature < featureVector.size(); ++feature) {
                    File << " " << (feature + 1) << ":" << featureVector.at(feature);
                }
                File << endl;
            }
        }
        printf("\n");
        File.flush();
        File.close();
    } else {
        printf("Error opening file '%s'!\n", featuresFile.c_str());
        return EXIT_FAILURE;
    }
    // </editor-fold>

    // <editor-fold defaultstate="collapsed" desc="Pass features to machine learning algorithm">
    /// Read in and train the calculated feature vectors
    printf("Calling SVMlight\n");
    SVMlight::getInstance()->read_problem(const_cast<char*> (featuresFile.c_str()));
    SVMlight::getInstance()->train(); // Call the core libsvm training procedure
    printf("Training done, saving model file!\n");
    SVMlight::getInstance()->saveModelToFile(svmModelFile);
    // </editor-fold>

    // <editor-fold defaultstate="collapsed" desc="Generate single detecting feature vector from calculated SVM support vectors and SVM model">
    printf("Generating representative single HOG feature vector using svmlight!\n");
    vector<float> descriptorVector;
    vector<unsigned int> descriptorVectorIndices;
    // Generate a single detecting feature vector (v1 | b) from the trained support vectors, for use e.g. with the HOG algorithm
    SVMlight::getInstance()->getSingleDetectingVector(descriptorVector, descriptorVectorIndices);
    // And save the precious to file system
    saveDescriptorVectorToFile(descriptorVector, descriptorVectorIndices, descriptorVectorFile);
    // </editor-fold>

    // <editor-fold defaultstate="collapsed" desc="Test detecting vector">

    cout << "Test Detecting Vector" << endl;
    hog.setSVMDetector(descriptorVector); // Set our custom detecting vector
    cout << "descriptorVector size: " << sizeof(descriptorVector) << endl;

    getFilesInDirectory(tesSamplesDir, tesImages, validExtensions);
    namedWindow("Test Detector", 1);

    for( size_t it = 0; it < tesImages.size(); it++ )
    {
        cout << "Process image " << tesImages[it] << endl;
        Mat image = imread( tesImages[it], 1 );
        detectAndDrawObjects(image, hog);

        for(;;)
        {
            int c = waitKey();
            if( (char)c == 'n')
                break;
            else if( (char)c == '\x1b' )
                exit(0);
        }
    }
    // </editor-fold>
    return EXIT_SUCCESS;
}
like image 29
bonchenko Avatar answered Oct 21 '22 09:10

bonchenko