My implementation of steepest descent for solving Ax = b
is showing some weird behavior: for any matrix large enough (~10 x 10
, have only tested square matrices so far), the returned x
contains all huge values (on the order of 1x10^10
).
def steepestDescent(A, b, numIter=100, x=None):
"""Solves Ax = b using steepest descent method"""
warnings.filterwarnings(action="error",category=RuntimeWarning)
# Reshape b in case it has shape (nL,)
b = b.reshape(len(b), 1)
exes = []
res = []
# Make a guess for x if none is provided
if x==None:
x = np.zeros((len(A[0]), 1))
exes.append(x)
for i in range(numIter):
# Re-calculate r(i) using r(i) = b - Ax(i) every five iterations
# to prevent roundoff error. Also calculates initial direction
# of steepest descent.
if (numIter % 5)==0:
r = b - np.dot(A, x)
# Otherwise use r(i+1) = r(i) - step * Ar(i)
else:
r = r - step * np.dot(A, r)
res.append(r)
# Calculate step size. Catching the runtime warning allows the function
# to stop and return before all iterations are completed. This is
# necessary because once the solution x has been found, r = 0, so the
# calculation below divides by 0, turning step into "nan", which then
# goes on to overwrite the correct answer in x with "nan"s
try:
step = np.dot(r.T, r) / np.dot( np.dot(r.T, A), r )
except RuntimeWarning:
warnings.resetwarnings()
return x
# Update x
x = x + step * r
exes.append(x)
warnings.resetwarnings()
return x, exes, res
(exes
and res
are returned for debugging)
I assume the problem must be with calculating r
or step
(or some deeper issue) but I can't make out what it is.
The code seems correct. For example, the following test work for me (both linalg.solve and steepestDescent give the close answer, most of the time):
import numpy as np
n = 100
A = np.random.random(size=(n,n)) + 10 * np.eye(n)
print(np.linalg.eig(A)[0])
b = np.random.random(size=(n,1))
x, xs, r = steepestDescent(A,b, numIter=50)
print(x - np.linalg.solve(A,b))
The problem is in the math. This algorithm is guaranteed to converge to the correct solution if A is positive definite matrix. By adding the 10 * identity matrix to a random matrix, we increase the probability that all the eigen-values are positive
If you test with large random matrices (for example A = random.random(size=(n,n))
, you are almost certain to have a negative eigenvalue, and the algorithm will not converge.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With