I have a large data frame with a factor column that I need to divide into three factor columns by splitting up the factor names by a delimiter. Here is my current approach, which is very slow with a large data frame (sometimes several million rows):
data <- readRDS("data.rds")
data.df <- reshape2:::melt.array(data)
head(data.df)
##  Time Location    Class Replicate Population
##1    1        1 LIDE.1.S         1 0.03859605
##2    2        1 LIDE.1.S         1 0.03852957
##3    3        1 LIDE.1.S         1 0.03846853
##4    4        1 LIDE.1.S         1 0.03841260
##5    5        1 LIDE.1.S         1 0.03836147
##6    6        1 LIDE.1.S         1 0.03831485
Rprof("str.out")
cl <- which(names(data.df)=="Class")
Classes <- do.call(rbind, strsplit(as.character(data.df$Class), "\\."))
colnames(Classes) <- c("Species", "SizeClass", "Infected")
data.df <- cbind(data.df[,1:(cl-1)],Classes,data.df[(cl+1):(ncol(data.df))])
Rprof(NULL)
head(data.df)
##  Time Location Species SizeClass Infected Replicate Population
##1    1        1    LIDE         1        S         1 0.03859605
##2    2        1    LIDE         1        S         1 0.03852957
##3    3        1    LIDE         1        S         1 0.03846853
##4    4        1    LIDE         1        S         1 0.03841260
##5    5        1    LIDE         1        S         1 0.03836147
##6    6        1    LIDE         1        S         1 0.03831485
summaryRprof("str.out")
$by.self
                 self.time self.pct total.time total.pct
"strsplit"            1.34    50.00       1.34     50.00
"<Anonymous>"         1.16    43.28       1.16     43.28
"do.call"             0.04     1.49       2.54     94.78
"unique.default"      0.04     1.49       0.04      1.49
"data.frame"          0.02     0.75       0.12      4.48
"is.factor"           0.02     0.75       0.02      0.75
"match"               0.02     0.75       0.02      0.75
"structure"           0.02     0.75       0.02      0.75
"unlist"              0.02     0.75       0.02      0.75
$by.total
                       total.time total.pct self.time self.pct
"do.call"                    2.54     94.78      0.04     1.49
"strsplit"                   1.34     50.00      1.34    50.00
"<Anonymous>"                1.16     43.28      1.16    43.28
"cbind"                      0.14      5.22      0.00     0.00
"data.frame"                 0.12      4.48      0.02     0.75
"as.data.frame.matrix"       0.08      2.99      0.00     0.00
"as.data.frame"              0.08      2.99      0.00     0.00
"as.factor"                  0.08      2.99      0.00     0.00
"factor"                     0.06      2.24      0.00     0.00
"unique.default"             0.04      1.49      0.04     1.49
"unique"                     0.04      1.49      0.00     0.00
"is.factor"                  0.02      0.75      0.02     0.75
"match"                      0.02      0.75      0.02     0.75
"structure"                  0.02      0.75      0.02     0.75
"unlist"                     0.02      0.75      0.02     0.75
"[.data.frame"               0.02      0.75      0.00     0.00
"["                          0.02      0.75      0.00     0.00
$sample.interval
[1] 0.02
$sampling.time
[1] 2.68
Is there any way to speed up this operation? I note that there are a small (<5) number of each of the categories "Species", "SizeClass", and "Infected", and I know what these are in advance.
Notes:
stringr::str_split_fixed performs this task, but not any fasterreshape::melt on an array in which Class and its associated levels are a dimension.  If there's a faster way to get from there to here, great.data.rds at http://dl.getdropbox.com/u/3356641/data.rds
This should probably offer quite an increase:
library(data.table)
DT <- data.table(data.df)
DT[, c("Species", "SizeClass", "Infected") 
      := as.list(strsplit(Class, "\\.")[[1]]), by=Class ]
The reasons for the increase:
data.table  pre allocates memory for columnsby statement allows you to implement the strsplit task once per each unique value. Here is a nice quick method for the whole process.
# Save the new col names as a character vector 
newCols <- c("Species", "SizeClass", "Infected") 
# split the string, then convert the new cols to columns
DT[, c(newCols) := as.list(strsplit(as.character(Class), "\\.")[[1]]), by=Class ]
DT[, c(newCols) := lapply(.SD, factor), .SDcols=newCols]
# remove the old column. This is instantaneous. 
DT[, Class := NULL]
## Have a look: 
DT[, lapply(.SD, class)]
#       Time Location Replicate Population Species SizeClass Infected
# 1: integer  integer   integer    numeric  factor    factor   factor
DT
                        If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With