I'm processing events using Dataframes converted from a stream of JSON events which eventually gets written out as Parquet format.
However, some of the JSON events contains spaces in the keys which I want to log and filter/drop such events from the data frame before converting it to Parquet because ;{}()\n\t=
are considered special characters in Parquet schema (CatalystSchemaConverter) as listed in [1] below and thus should not be allowed in the column names.
How can I do such validations in Dataframe on the column names and drop such an event altogether without erroring out the Spark Streaming job.
[1] Spark's CatalystSchemaConverter
def checkFieldName(name: String): Unit = {
// ,;{}()\n\t= and space are special characters in Parquet schema
checkConversionRequirement(
!name.matches(".*[ ,;{}()\n\t=].*"),
s"""Attribute name "$name" contains invalid character(s) among " ,;{}()\\n\\t=".
|Please use alias to rename it.
""".stripMargin.split("\n").mkString(" ").trim
)
}
You can get the all columns of a Spark DataFrame by using df. columns , it returns an array of column names as Array[Stirng] .
Although Spark SQL itself is not case-sensitive, Hive compatible file formats such as Parquet are. Spark SQL must use a case-preserving schema when querying any table backed by files containing case-sensitive field names or queries may not return accurate results.
To do this first create a list of data and a list of column names. Then pass this zipped data to spark. createDataFrame() method. This method is used to create DataFrame.
For everyone experiencing this in pyspark: this even happened to me after renaming the columns. One way I could get this to work after some iterations is this:
file = "/opt/myfile.parquet"
df = spark.read.parquet(file)
for c in df.columns:
df = df.withColumnRenamed(c, c.replace(" ", ""))
df = spark.read.schema(df.schema).parquet(file)
You can use a regex to replace all invalid characters with an underscore before you write into parquet. Additionally, strip accents from the column names too.
Here's a function normalize
that do this for both Scala and Python :
/**
* Normalize column name by replacing invalid characters with underscore
* and strips accents
*
* @param columns dataframe column names list
* @return the list of normalized column names
*/
def normalize(columns: Seq[String]): Seq[String] = {
columns.map { c =>
org.apache.commons.lang3.StringUtils.stripAccents(c.replaceAll("[ ,;{}()\n\t=]+", "_"))
}
}
// using the function
val df2 = df.toDF(normalize(df.columns):_*)
import unicodedata
import re
def normalize(column: str) -> str:
"""
Normalize column name by replacing invalid characters with underscore
strips accents and make lowercase
:param column: column name
:return: normalized column name
"""
n = re.sub(r"[ ,;{}()\n\t=]+", '_', column.lower())
return unicodedata.normalize('NFKD', n).encode('ASCII', 'ignore').decode()
# using the function
df = df.toDF(*map(normalize, df.columns))
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With