I've got an output from Spark Aggregator which is List[Character]
case class Character(name: String, secondName: String, faculty: String)
val charColumn = HPAggregator.toColumn
val resultDF = someDF.select(charColumn)
So my dataframe looks like:
+-----------------------------------------------+
| value |
+-----------------------------------------------+
|[[harry, potter, gryffindor],[ron, weasley ... |
+-----------------------------------------------+
Now I want to convert it to
+----------------------------------+
| name | second_name | faculty |
+----------------------------------+
| harry | potter | gryffindor |
| ron | weasley | gryffindor |
How can I do that properly?
This can be done using Explode and Split Dataframe functions.
Below is an example:
>>> df = spark.createDataFrame([[[['a','b','c'], ['d','e','f'], ['g','h','i']]]],["col1"])
>>> df.show(20, False)
+---------------------------------------------------------------------+
|col1 |
+---------------------------------------------------------------------+
|[WrappedArray(a, b, c), WrappedArray(d, e, f), WrappedArray(g, h, i)]|
+---------------------------------------------------------------------+
>>> from pyspark.sql.functions import explode
>>> out_df = df.withColumn("col2", explode(df.col1)).drop('col1')
>>>
>>> out_df .show()
+---------+
| col2|
+---------+
|[a, b, c]|
|[d, e, f]|
|[g, h, i]|
+---------+
>>> out_df.select(out_df.col2[0].alias('c1'), out_df.col2[1].alias('c2'), out_df.col2[2].alias('c3')).show()
+---+---+---+
| c1| c2| c3|
+---+---+---+
| a| b| c|
| d| e| f|
| g| h| i|
+---+---+---+
>>>
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With