I want to train the logistic regression model using Apache Spark in Java. As first step I would like to train the model just once and save the model parameters (intercept and Coefficient). Subsequently use the saved model parameters to score at a later point in time. I am able to save the model in parquet file, using the following code
LogisticRegressionModel trainedLRModel = logReg.fit(data);
trainedLRModel.write().overwrite().save("mypath");
When I load the model to score, I get the following error.
LogisticRegression lr = new LogisticRegression();
lr.load("//saved_model_path");
Exception in thread "main" java.lang.NoSuchMethodException: org.apache.spark.ml.classification.LogisticRegressionModel.<init>(java.lang.String)
at java.lang.Class.getConstructor0(Class.java:3082)
at java.lang.Class.getConstructor(Class.java:1825)
at org.apache.spark.ml.util.DefaultParamsReader.load(ReadWrite.scala:325)
at org.apache.spark.ml.util.MLReadable$class.load(ReadWrite.scala:215)
at org.apache.spark.ml.classification.LogisticRegression$.load(LogisticRegression.scala:672)
at org.apache.spark.ml.classification.LogisticRegression.load(LogisticRegression.scala)
Is there a way to train and save model and then evaluate(score) later? I am using Spark ML 2.1.0 in Java.
I face the same problem with pyspark 2.1.1, when i change from LogisticRegression to LogisticRegressionModel , everything works well.
LogisticRegression.load("/model/path") # not works
LogisticRegressionModel.load("/model/path") # works well
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With