What are useful strategies to adopt when you or the project does not have a clear idea of what the final (if any) product is going to be?
Let us take "research" to mean an exploration into an area where many things are not known or implemented and where a formal set of deliverables cannot be specified at the start of the project. This is common in STEM (science (physics, chemistry, biology, materials, etc.), technology engineering, medicine) and many areas of informatics and computer science. Software is created either as an end in itself (e.g. a new algorithm), a means of managing data (often experimental) and simulation (e.g. materials, reactions, etc.). It is usually created by small groups or individuals (I omit large science such as telescopes and hadron colliders where much emphasis is put of software engineering.)
Research software is characterised by (at least):
Projects can be anything from days ("see if this is a worthwhile direction to go") to years ("this is my PhD topic") or longer. Frequently the people are not hired as software people but find they need to write code to get the research done or get infected by writing software. There is generally little credit for good software engineering - the "product" is a conference or journal publication.
However some of these projects turn out to be highly valuable - the most obvious area is genomics where in the early days scientists showed that dynamic programming was a revolutionary tool to help thinking about protein and nucleic structure - now this is a multi-billion industry (or more). The same is true for quantum mechanics codes to predict properties of substances.
The downside is that much code gets thrown away and it is difficult to build on. To try to overcome this we have build up libraries which are shared in the group and through the world as Open Source (but here again there is very little credit given). Many researchers reinvent the wheel ("head-down" programming where colleagues are not consulted and "hero" programming where someone tries to do the whole lot themself).
Too much formality at the start of a project often puts people off and innovation is lost (no-one will spend 2 months writing formal specs and unit tests). Too little and bad habits are developed and promulgated. Programming courses help but again it's difficult to get people doing them especially when you rely on their goodwill. Mentoring is extremely valuable but not always successful.
Are there online resources which can help to persuade people into good software habits?
EDIT: I'm grateful for dmckee (below) for pointing out a similar discussion. It's all good stuff and I particularly agree with version control as being one of the most important things that we can offer scientists (we offered this to our colleagues and got very good takeup). I also like the approach of the Software Carpentry course mentioned there.
Research and development (R&D) includes activities that companies undertake to innovate and introduce new products and services. It is often the first stage in the development process. The goal is typically to take new products and services to market and add to the company's bottom line.
Technology and software development involves a lot of R&D, so these activities qualify for the R&D tax credit. Developing, improving, or modifying existing products is all part of it.
A software development environment (SDE) is an environment that automates or augments the routines involved in a software development cycle. This includes programming-in-the-many tasks like team and project management as well as programming-in-the-large tasks like configuration management.
It's extremely difficult. The environment both you and Stefano Borini describe is very accurate. I think there are three key factors which propagate the situation.
Short-term thinking. There are a few reasons that short-term thinking is the norm, most of them already well explained by Stefano. As well as the awful pressure to publish and the lack of recognition for software creation, I would emphasise the number of short-term contracts. There is simply very little advantage for more junior academics (PhD students and postdocs) to spend any time planning long-term software strategies, since contracts are 2-3 years. In the case of longer-term projects e.g. those based around the simulation code of a permanent member of staff, I have seen some applications of basic software engineering, things like simple version control, standard test cases, etc. However even in these cases, project management is extremely primitive.
Lack of formal training and experience. This is a serious handicap. In astronomy and astrophysics, programming is an essential tool, but understanding of the costs of development, particularly maintenance overheads, is extremely poor. Because scientists are normally smart people, there is a feeling that software engineering practices don't really apply to them, and that they can 'just make it work'. With more experience, most programmers realise that writing code that mostly works isn't the hard part; maintaining and extending it efficiently and safely is. Some scientific code is throwaway, and in these cases the quick and dirty approach is adequate. But all too often, the code will be used and reused for years to come, bringing consequent grief to all involved with it.
Continuous turnover of grad students/postdocs for new development. I think this is the key feature that allows the academic approach to software to continue to survive. If the code is horrendous and takes days to understand and debug, who pays that price? In general, it's not the original author (who has probably moved on). Nor is it the permanent member of staff, who is often only peripherally involved with new development. It is normally the graduate student who is implementing new algorithms, producing novel approaches, trying to extend the code in some way. Sometimes it will be a postdoc, hired specifically to work on adding some feature to an existing code, and contractually obliged to work on this area for some fraction of their time.
This model is hugely inefficient. I know a PhD student in astrophysics who spent over a year trying to implement a relatively basic piece of mathematics, only a few hundred lines of code, in an existing n-body code. Why did it take so long? Because she literally spent weeks trying to understand the existing, horribly written code, and how to add her calculation to it, and months more ineffectively debugging her problems due to the monolithic code structure, coupled with her own lack of experience. Note that there was almost no science involved in this process; just wasting time grappling with code. Who ultimately paid that price? Only her. She was the one who had to put more hours in to try and get enough results to make a PhD. Her supervisor will get another grad student after she's gone - and so the cycle continues.
The point I'm trying to make is that the problem with the software creation process in academia is endemic within the system itself, a function of the resources available and the type of work that is rewarded. The culture is deeply embedded throughout academia. I don't see any easy way of changing that culture through external resources or training. It's the system itself that needs to change, to reward people for writing substantial code, to place increased scrutiny on the correctness of results produced using scientific code, to recognise the importance of training and process in code, and to hold supervisors jointly responsible for wasting the time of the members of their research group.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With