I am writing a C++/SDL/OpenGL application, and I have had the most peculiar bug. The game seemed to be working fine with a simple variable timestep. But then the FPS started behaving strangely. I figured out that both Sleep(1) and SDL_Delay(1) take 15 ms to complete.
Any input into those functions between 0-15 takes 15ms to complete, locking FPS at about 64. If I set it to 16, it takes 30 MS O.O
My loop looks like this:
while (1){
GLuint t = SDL_GetTicks();
Sleep(1); //or SDL_Delay(1)
cout << SDL_GetTicks() - t << endl; //outputs 15
}
It will very rarely take 1ms as it is supposed to, but the majority of the time it takes 15ms.
My OS is windows 8.1. CPU is an intel i7. I am using SDL2.
The ticker defaults to 64 hz, or 15.625 ms / tick. You need to change this to 1000hz == 1ms with timeBeginPeriod(1). MSDN article:
http://msdn.microsoft.com/en-us/library/windows/desktop/dd757624(v=vs.85).aspx
If the goal here is to get a fixed frequency sequence, you should use a higher resolution timer, but unfortunately these can only be polled, so a combination of polling and sleep to reduce cpu overhead is needed. Example code, which assumes that a Sleep(1) could take up to almost 2 ms (which does happen with Windows XP, but not with later versions of Windows).
/* code for a thread to run at fixed frequency */
#define FREQ 400 /* frequency */
typedef unsigned long long UI64; /* unsigned 64 bit int */
LARGE_INTEGER liPerfFreq; /* used for frequency */
LARGE_INTEGER liPerfTemp; /* used for query */
UI64 uFreq = FREQ; /* process frequency */
UI64 uOrig; /* original tick */
UI64 uWait; /* tick rate / freq */
UI64 uRem = 0; /* tick rate % freq */
UI64 uPrev; /* previous tick based on original tick */
UI64 uDelta; /* current tick - previous */
UI64 u2ms; /* 2ms of ticks */
#if 0 /* for optional error check */
static DWORD dwLateStep = 0;
#endif
/* get frequency */
QueryPerformanceFrequency(&liPerfFreq);
u2ms = ((UI64)(liPerfFreq.QuadPart)+499) / ((UI64)500);
/* wait for some event to start this thread code */
timeBeginPeriod(1); /* set period to 1ms */
Sleep(128); /* wait for it to stabilize */
QueryPerformanceCounter((PLARGE_INTEGER)&liPerfTemp);
uOrig = uPrev = liPerfTemp.QuadPart;
while(1){
/* update uWait and uRem based on uRem */
uWait = ((UI64)(liPerfFreq.QuadPart) + uRem) / uFreq;
uRem = ((UI64)(liPerfFreq.QuadPart) + uRem) % uFreq;
/* wait for uWait ticks */
while(1){
QueryPerformanceCounter((PLARGE_INTEGER)&liPerfTemp);
uDelta = (UI64)(liPerfTemp.QuadPart - uPrev);
if(uDelta >= uWait)
break;
if((uWait - uDelta) > u2ms)
Sleep(1);
}
#if 0 /* optional error check */
if(uDelta >= (uWait*2))
dwLateStep += 1;
#endif
uPrev += uWait;
/* fixed frequency code goes here */
/* along with some type of break when done */
}
timeEndPeriod(1); /* restore period */
Looks like 15 ms is the smallest slice the OS will deliver to you. I'm not sure about your specific framework but sleep usually guarantees a minimal sleep time. (ie. it will sleep for at least 1ms.)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With